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How conceptual knowledge is represented in the human brain remains to be determined. To address the differ-
ential role of low-level sensory-based and high-level abstract features in semantic processing, we combined be-
havioral studies of linguistic production andbrain activitymeasures by functionalmagnetic resonance imaging in
sighted and congenitally blind individuals while they performed a property-generation taskwith concrete nouns
from eight categories, presented through visual and/or auditory modalities.
Patterns of neural activity within a large semantic cortical network that comprised parahippocampal, lateral oc-
cipital, temporo-parieto-occipital and inferior parietal cortices correlatedwith linguistic production andwere in-
dependent both from the modality of stimulus presentation (either visual or auditory) and the (lack of) visual
experience. In contrast, selectedmodality-dependent differenceswere observed onlywhen the analysiswas lim-
ited to the individual regions within the semantic cortical network.
We conclude that conceptual knowledge in the human brain relies on a distributed, modality-independent cor-
tical representation that integrates the partial category and modality specific information retained at a regional
level.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Theories about knowledge organization in the human brain propose
that concepts may be described according either to perceptual processes
or to semantic representations. Specifically, themodality-specificity theory
suggests that knowledge is principally modulated by low-level compo-
nents related both to sensory modalities (e.g., visual, auditory or tactile)
and tomotor functions engaged during stimulus acquisition and process-
ing (Warrington and Shallice, 1984). This theoretical framework postu-
lates that knowledge relies on several subsystems (e.g., visual, verbal
through written and spoken words): concepts would therefore result
from an integrated contribution of sensory-based andmotor-based infor-
mation (Warrington and McCarthy, 1987). In opposition, the domain-
specificity theory posits that knowledge may instead be codified within
a more abstract organization of semantic attributes independently from
sensorimotor processing (Caramazza and Shelton, 1998; Mahon et al.,
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2009). Within this view, the high-level semantic systemwould comprise
a multidimensional space of semantic properties to represent concepts
(Caramazza and Mahon, 2003).

Both these distinct theories sustain an organization of knowledge
based on semantic categories and provide an explanation for distinct
category-specific semantic deficits in brain-damaged patients
(Gainotti, 2010; Grossman et al., 2013). Nevertheless, whether and to
what extent the conceptual structure of knowledge organization is rep-
resented at a neural level on features comprising low-level, sensory-
based information and/or high-level abstract semantic features still re-
mains an open question (Fairhall and Caramazza, 2013). Furthermore,
if conceptual knowledge relies on a common abstract representation
across sensory modalities, to what extent would such representation
be independent from specific perceptual properties (e.g., visual or audi-
tory features)? Equally, if conceptual knowledge relies on specific
sensory-based features, would there be a level at which sensory infor-
mation ‘advances’ towards a more abstract representation?

Previously, conceptual representations in congenitally blind individ-
uals – who acquire knowledge exclusively through non-visual inputs –
have been explored to solve the entanglement between sensory and se-
mantic processing. If the semantic system strongly hangs onto the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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sensory modality through which concepts are acquired (as postulated
by themodality-specific theory), onewould expect knowledge organiza-
tion to be deeply rearranged as a consequence of congenital blindness.
Contrary to such expectations, congenitally blind people show high be-
havioral similarities with sighted individuals in conceptual representa-
tions, even when the processing of semantic features is directly
related to visual features (i.e., color terms, verbs of vision) (Bedny
et al., 2011; Landau and Gleitman, 1985; Noppeney et al., 2003). In
line with these results, a modality-independent ability to discriminate
conceptual representations through elicited neural activity has been
demonstrated in sighted individuals among semantic categories and
across presentation modalities (i.e., visual pictorial, visual word, verbal
auditory and natural sounds) (Devereux et al., 2013; Simanova et al.,
2014). Semantic discrimination across modalities in sighted subjects,
though, may be related to common sensory features sustained by
visually-based perceptual or imagery processes (Reddy et al., 2010).
To exclude any potential contributions from visual imagery (i.e., from
a specific sensory modality), a finer characterization of the neural
bases of knowledge organization in those individuals who lack visual
experience since birth is needed, to dissect the distinct roles of low-
level, sensory modality-grounded perceptual information and high-
level abstract semantic properties.

In addition to the relationship between sensory and semantic pro-
cessing, another key question, that is, how theorganization of conceptu-
al knowledge is scaled in the human brain, remains still to be addressed.
In otherwords, does knowledge organization rely on a small-scale local-
ized representation based on an anatomically (and thus functionally)
well-defined set of regions (Binder et al., 2009), or rather does it
count on large-scale representational patterns of neural activity
(Cukur et al., 2013; Huth et al., 2012)? In contrast to a localized perspec-
tive, for which each subdivision of the semantic cortical network would
manage distinct categories during semantic processing (e.g., knowledge
of actions, manipulable artifacts, abstract and concrete concepts, Binder
et al., 2009; Fernandino et al., 2015), recently it has been proposed that
knowledgemay be represented by a category-based organization into a
continuous semantic space mapped across a large extent of cortex
(Huth et al., 2012). From a neuropsychological perspective, both focal
and widespread brain lesions may equally generate category-specific
semantic deficits (Devlin et al., 2002; Gainotti, 2010; Moss et al.,
2002). As a result, it is still undecided how small-scale and large-scale
levels may integrate within a unique semantic system, or at which
scale category discrimination may occur (Fedorenko and Thompson-
Schill, 2014).

Based on this background, the present studywas conceived to inves-
tigate (1) the impact of different input modalities on the neural re-
sponses related to conceptual representations of concrete nouns
within semantic-sensitive cortical regions, and (2) how knowledge or-
ganization would be affected by the definition of the semantic system
at a cortical level, when shifting from a smaller to a larger scale neural
representation.

To determine the role of distinct sensorymodalities in semantic pro-
cessing, we performed a conjoint observation in both sighted and con-
genitally blind individuals, in combination with various presentation
modalities of the same experimental stimuli (i.e., pictorial, verbal visual
and verbal auditory). Furthermore, the measurement of neural activity
at different scales of cortical representation within the semantic system
determined towhat extent low-level sensory-based information and/or
high-level abstract features contribute to conceptual knowledge
organization.

2. Materials and methods

2.1. Behavioral analysis

The Blind Italian Norming Data (BLIND) set, collected and validated
in an Italian independent sample of blind and sighted participants,
comprised descriptions of fifty nouns and twenty verbs (Lenci et al.,
2013). The nouns consisted of forty concrete and ten non-concrete con-
cepts. In the current fMRI study, only the forty concrete nouns from the
BLIND set were used. Nouns belonged to eight different semantic cate-
gories (i.e., vegetables, fruits, natural and artificial places, mammals,
birds, tools, vehicles) (Supplementary Table S1), which were, for the
most part, shared with previous norming studies (Connolly et al.,
2007; McRae et al., 2005). For each noun, a set of psycholinguistic fea-
tures was estimated (i.e., word length, bigram frequency, syllabic fre-
quency, word frequency and familiarity) and compared to exclude
differences in linguistic features across categories (Supplementary
Figure S1).

In brief, in the BLIND study, 26 sighted and 22 congenitally blind par-
ticipants listened to concept names, and were asked to verbally enu-
merate in one minute the properties (features) that describe the
entities thewords refer to. The collected featureswere subsequently ex-
tracted and pooled across subjects in each group, to derive averaged
representations of the nouns in both sighted and blind participants,
using subjects' production frequency as an estimate of feature salience
(Lenci et al., 2013). Finally, frequencies were normalized by scaling to
unit length. This procedure resulted in a normalized feature space of
812 dimensions (properties) for sighted and 743 for blind participants.
Representational spaces were derived from feature spaces using cosine
similarity index, obtaining two group-level dissimilarity matrices (Sup-
plementary Figure S2). Afterwards, to measure behavioral similarities,
representational spaceswere compared between blind and sighted par-
ticipants using the Mantel test (10,000 permutations, one-tailed rank
test). Finally, as we were interested in producing representational
spaces related to the category representation, behavioral feature spaces
were averagedwithin the eight semantic categories andwere compared
between blind and sighted participants using the Mantel test (10,000
permutations, one-tailed rank test). Moreover, amultidimensional scal-
ing procedure (using cosine distance and metric stress criterion) was
performed (Fig. 2), to represent behavioral data across sighted and con-
genitally blind individuals (Kruskal and Wish, 1978).

2.2. fMRI experimental setup and participants

Neural responses were measured in fMRI with a five-runs slow
event-related design (gradient echo echoplanar images GRE-EPI, GE
SIGNA at 3T, equipped with an 8-channel head coil, TR 2.5 s, FA: 90°,
TE 40 ms, FOV = 24 cm, 37 axial slices, 2 × 2 × 4 mm3 voxel size) in
20 right-handed volunteers, 15 sighted and 5 congenitally blind individ-
uals, during a property generation task after visual and/or auditory pre-
sentation of the same forty concrete nouns of the BLIND set. Participants
were divided into four groups accordingly to the stimulus presentation
format: 5 sighted individualswere presentedwith a pictorial formof the
nouns (M/F: 2/3 mean age ± SD: 29.2 ± 12.8 years), 5 sighted individ-
uals with a verbal visual (i.e., written Italian words) form (M/F: 3/2
mean age ± SD: 36.8 ± 11.9 years), 5 sighted individuals with a verbal
auditory (i.e., spoken Italian words) form (M/F: 2/3 mean age ± SD:
37.2 ± 15 years) and 5 congenitally blind with a verbal auditory form
(M/F: 2/3 mean age ± SD: 36.4 ± 11.7 years). High resolution T1-
weighted spoiled gradient recall (SPGR; TR = 8.1 ms; TE = 3.1 ms;
170 sagittal slices; voxel size = 1 × 1 × 1 mm) images were obtained
for each participant to provide detailed brain anatomy. The study was
approved by the University of Pisa Ethical Committee. All participants
signed a written informed consent prior to enrollment in the study.

During the visual presentationmodality, subjects could bepresented
either with images representing the written word (verbal visual form)
or color pictures of concrete objects (visual pictorial form). Stimulus
presentation lasted 3 s andwas followed by a 7-s inter stimulus interval
(Fig. 1). During the auditory presentationmodality, subjects were asked
to listen to about 1s-long words – referring to the same concrete nouns
above – followed by 9-s of inter stimulus interval (Fig. 1). To reduce the
impact of the fine grained details of each stimulus presentation



234 G. Handjaras et al. / NeuroImage 135 (2016) 232–242
modality (i.e., images or audio clips), stimuli were presented four times
each, changing the voice gender for the auditory form or presenting dif-
ferent image versions for the pictorial form (Handjaras et al., 2015;
Haxby et al., 2001). Stimuli were randomly presented across runs and
subjects to avoid any bias in the presentation sequence (Mumford
et al., 2014). Participants were instructed to mentally generate a set of
features related to each noun (e.g., for a dog: “it's an animal”, “has
four paws”) during each 10-s long stimulus presentation block. To im-
prove generalization of the stimuli (i.e., higher level representation of
the associated concepts), participants were briefed to think about as
many properties of the stimulus as they could during each presentation,
in order to obtain a neural activity related to its multiple properties
(Mitchell et al., 2008; Simmons et al., 2008). Each run had, at its onset
and ending, two 15-s long blocks of rest, to obtain a baseline measure
of activity. Stimulus presentation was handled by using the software
package Presentation® (Neurobehavioral System, Berkeley, CA, http://
www.neurobs.com) via the RM compatible visual stimulation device
(VisuaStim-Resonance Technologies, Northridge, USA; dual-display
video, visual field: 30° × 22°, 5″, 800 × 600 pixels, 60Hz) and MR-
compatible headphones. The size in visual angles (mean accuracy ±
standard deviation) was 18.9° ± 4.1° × 14.8° ± 2.6° for the pictures in
the pictorial form and 7.7° ± 2.5° × 1.9°± 0.3° for thewords in the ver-
bal visual form.

2.3. fMRI data preprocessing

The AFNI software package was used to analyze functional imaging
data (Cox, 1996). After a standard preprocessing (see Supplementary
Material for further details), a multiple regression analysis was per-
formed. The pattern of response to each stimulus was modeled across
repetitions with a regressor. The obtained t-score response patterns of
each stimulus were used as an estimate of the strength of Blood-
Oxygen-Level Dependent (BOLD) response compared to rest and in-
cluded in the subsequent encoding analysis. Moreover, to reduce com-
putational effort in the subsequent steps, a spatial filter was applied to
select grey matter only regions, thus to decrease the total number of
voxels.

2.4. Single-subject encoding analysis

Sincewewere interested both in generating amachine learning pro-
cedure based on the category encoding matrix, where each stimulus
was identified according to the membership to one of the eight seman-
tic categories (i.e., a semantic category model as in Devereux et al.,
2013), and in selecting themost informative voxels without any a priori
selection criteria (e.g., a “stability score”) (Mitchell et al., 2008), an ad-
hoc procedure was developed (Supplementary Figure S8). Briefly, as
Fig. 1. The fMRI task. Picture represents the experimental paradigm across presentation
formats.
proposed by Mitchell and colleagues (Mitchell et al., 2008), a machine
learning algorithm predicted the fMRI activation in the brain as a
weighted sum of images, each one generated from an encoding dimen-
sion. In detail, a least-squares multiple linear regression analysis, per-
formed within a leave-two-stimuli-out cross-validation procedure
produced a set of learned scalar parameters that specified the degree
to which each encoding dimension modulates the voxels activity.
Hence, for each iteration of the cross-validation procedure, the model
was first trained with 38 stimuli, then only the 500 voxels (Mitchell
et al., 2008) that showed the highest coefficient of determination R2 (a
measure of the fitting between the encoding matrix and the training
set) and that survived a small volume correction to remove small isolat-
ed clusters (nearest neighbor, minimum cluster size of 20 voxels) were
retained. Once trained, the resulting algorithm was used to predict the
fMRI activation within the selected 500 voxels of the two left-out stim-
uli. Afterwards, its prediction accuracy was evaluated with a simple
match between the predicted and the real fMRI activations of the two
left-out stimuli using cosine similarity (Mitchell et al., 2008). This
leave-two-out procedure was iterated 780 times, training and testing
all possible stimulus pairs. Eventually, the procedure generated, for
each participant, an accuracy value related to the goodness of the fitting
of the encoding matrix on the data and a brain mask with the subset of
voxels used during the procedure (see Supplementary Material for
methodological considerations).

Finally, the classification accuracy of the encoding procedure for
each participant was assessedwith a binomial test (Pereira et al., 2009).

2.5. Cortical probability maps

First, FMRIB's Nonlinear Image Registration tool (FNIRT)was used to
register the high-resolution T1 images to the standard MNI-152 1 mm3

iso-voxel template (Andersson et al., 2007; Smith et al., 2004). The ma-
trix of coefficients was subsequently applied to the functional images.
Afterwards, to measure the spatial consistency of the information con-
tent patterns across individuals, a posterior probability map was built
using the single subject brain masks that comprised the most informa-
tive voxels involved in the stimuli discrimination from the encoding
procedures (Supplementary Figure S3). To avoid any circularities in
the analysis, a leave-one-subject-out procedure was adopted to gener-
ate an unbiased set of probability maps, thus to select the regions
from 19 subjects and to perform the subsequent information content
measures in the left out subject (see below) (Supplementary
Figure S9) (Kriegeskorte et al., 2009). Two thresholds were arbitrarily
selected (p N 0.25 and p N 0.5) that represented the probability of a
voxel to be informative in at least 5 participants or in 10 participants, re-
spectively. In addition, a cluster correction (nearest-neighbor, mini-
mum cluster size of 100 μL) was applied to each map in order to
remove small isolated clusters, yielding to a stable location of all the
above threshold regions across the probability maps of the participants.
In summary, each iteration of this leave-one-subject-out procedure led
to two cluster-corrected cortical probabilitymaps comprising the voxels
whose information contentwas consistent across at least 5 or 10 partic-
ipants, respectively.

2.6. Information content measures

The subsequent measures of information were computed – at the
single subject level – within the leave-one-subject-out procedure used
to define the probability maps (Supplementary Figure S9).

Initially, to compare the patterns of BOLD activity across different
participants and experimental conditions, data were normalized
subtracting the mean value of the region from all the voxels in the re-
gion, within each stimulus. This procedure was applied to all the re-
gions, probability maps and subjects. Afterward, information content
measureswere calculated. Specifically, representational space similarity
across presentation modalities, representational space similarity

http://www.neurobs.com
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between presentationmodalities and behavioral data and semantic cat-
egories discrimination ability based on rank accuracy were measured.

2.7. Representational spaces measures

Firstly, within each region and subject, all the patterns of BOLD activ-
ity related to the stimuli were averaged across the eight semantic a
priori categories thus to obtain ‘high-level’ semantic category represen-
tations. After that, using cosine distance, representational spaces were
derived from these semantic representations and averaged across sub-
jects in each group. This procedure generated matrices with the same
dimensions for all the experimental conditions (i.e., fMRI and behavioral
data). Subsequently, representational spaces obtained through different
presentation modalities were compared using the correlation
coefficient. Representational spaces from fMRI and behavioral data
were compared as well, in blind and sighted individuals separately
(Connolly et al., 2012; Devereux et al., 2013; Kriegeskorte et al., 2008).
Finally, these correlation coefficients were tested with a Mantel test
(10,000 permutations, one-tailed rank test, Bonferroni–Holm corrected
for the number of presentation modalities). In addition, a multidimen-
sional scaling procedure (using cosine distance, metric stress criterion
and Procrustes alignment)was performed in Fig. 2 to represent patterns
of BOLD activity across sighted and congenitally blind individuals as
compared to behavioral data (Kruskal and Wish, 1978).

2.8. Discrimination measures

Within regions, probability maps and subjects, the ability to recog-
nize between stimuli was evaluated with a rank accuracy measure.
Briefly, a cross-validation leave-one-stimulus-out procedure was devel-
oped: for each iteration we computed the cosine similarity between the
left-out stimulus and the categories, generated by averaging the re-
maining stimuliwithin-category, obtaining, for each stimulus, a normal-
ized rank-ordered list from the most likely (higher cosine similarity) to
the least likely category (lower cosine similarity) (Mitchell et al., 2004).
Therefore, the resulting rank error ranged from 0 to 1, corresponding to
the case in which the category the stimulus belongs to is ranked most
and least likely, respectively. Moreover, using such a procedure, the
chance level was always 0.5 regardless of the number of categories
involved.

Afterwards, the accuracies of stimulus discriminationwere averaged
within categories and statistically tested against a null distribution ob-
tained by shuffling themembership of the stimuli to the eight semantic
categories within 10,000 permutations (one-sided rank test, Bonferroni
corrected for the number of categories). The p values obtained from the
permutation tests for each category were combined across subjects and
within groups with Fisher's method (Bailey and Gribskov, 1998) and
subsequently corrected for multiple testing across categories and
Fig. 2.Multidimensional scaling of behavioral and brain functional data. Picture shows, on the le
and, on the right, the scaling generated from brain activity across presentation formats and ind
presentation modalities, using False Discovery Rate (FDR) (Benjamini
and Hochberg, 1995).

Finally, within each region, a category preference measure was cal-
culated. Indeed, during the rank-accuracy calculations, categories may
show an always-high rank in certain regions despite variability across
participants and sensory modalities. Conversely, other categories, even
if they were discriminated above chance across subjects, showed het-
erogeneous ranks across different subjects and regions, so they did not
exhibit such a bias. This category bias measure may indicate a prefer-
ence, within a region, for encoding features related to specific catego-
ries. Moreover, these features appeared to be encoded independently
from sensory modalities and from subject variability. The bias was
assessed, for each category, by collecting all the rank accuracies from
all the participants, then converting them into a unique category rank
and eventually averaging the latter across subjects. The resulting
mean rank was tested against a null distribution with a permutation
test (10,000 permutations, one-tailed rank test, Bonferroni–Holm
corrected for the number of categories).

2.9. Low-level sensory regions

In addition to the regions included in the probability maps, two re-
gions (the Heschl Gyrus -HG- and the Calcarine Sulcus -CalS-) were
added to assess the information content measures in primary sensory
regions. The HG and CalS regionswere defined using the Jülich histolog-
ical atlas of the FMRIB Software Library (Eickhoff et al., 2007; Smith
et al., 2004), retaining about 8600 μL for each region that extended in
both hemispheres.

The behavioral analysis, the encoding procedure and the informa-
tion content measures were accomplished with Matlab (Matworks
Inc., Natick, MA, USA), while BrainVisa was used to render the brain
meshes in Fig. 4.

3. Results

3.1. Behavioral similarities between sighted and congenitally blind
individuals

First, whether the semantic representations of the stimuli differed
between the two groups was assessed.

In a behavioral norming experiment aimed at obtaining featural
descriptions of the stimuli, the verbally-generated properties of
forty concrete nouns belonging to eight different semantic catego-
ries (i.e., vegetables, fruits, natural and artificial places, mammals,
birds, tools, vehicles) were collected in an independent sample of
sighted and congenitally blind individuals (Lenci et al., 2013).

Here, a representational similarity analysis (Kriegeskorte and Kievit,
2013) evaluated the likeness between representational spaces derived
from behavioral data relative to each noun stimulus in sighted and
ft, the scaling of the behavioral representation across the blind and the sighted experiment
ividuals related to left Posterior Semantic Network at the large-scale level.
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blind individuals. The correlation between these spaces was 0.94
(p b 0.0001), indicating their almost complete similarity. Moreover, as
shown in Fig. 2, a multidimensional scaling analysis showed that the
forty nouns were clearly organized along the originally-defined eight
semantic categories across sighted and blind individuals (Supplementa-
ry Figure S2). Altogether, these results confirmed that category-based
information is a dominant component in the definition of concepts of
both groups.

As shown in Fig. 3, evenwhen thedimensionality of representational
spaces was reduced on a category-based criterion (i.e., averaging the
features space within each semantic category), a high correlation be-
tween blind and sighted spaces was still exhibited (0.96; p b 0.0001),
similarly to what resulted from the representational space comparison
at the level of individual nouns.
3.2. Category-based cortical representation in sighted and congenitally
blind individuals

In a functional magnetic resonance imaging (fMRI) experimental
setup, Mitchell and colleagues (Mitchell et al., 2008) developed an
encoding procedure based on a multi voxel pattern analysis to uncover
the hidden conceptual representations related to the distributional
properties of many concrete nouns in a language corpus. Here, we
adopted a similar procedure to isolate the brain regions involved in
the discrimination of semantic categories. Specifically, to determine
the role of the sensorymodalities during concept formation, twenty vol-
unteers were equally divided into four experimental groups according
to the stimulus presentation format: three groups of five sighted partic-
ipants were presented with visual pictorial, verbal visual (i.e., written
words), and verbal auditory (i.e., spoken words) presentation modali-
ties, respectively, and five congenitally blind participants were present-
ed with verbal auditory stimuli (i.e., spoken words). Patterns of neural
activity were acquired while participants mentally generated features
related to each presented noun.

Following the behavioral results that highlighted a categorial struc-
ture of the conceptual representation, a multi voxel pattern analysis
defined on a category-based encoding model was used to distinguish
the forty concrete nouns across presentation modalities (Devereux
Fig. 3. Behavioral results. Picture shows the category-based representational spaces in the
blind and the sighted behavioral experiment and their correlation (r = 0.96, p b 0.0001).
et al., 2013; Mitchell et al., 2008). As results, nouns were significantly
discriminated in 19 out of 20 participants (p b 0.05) (one sighted sub-
ject in the verbal visualmodality performed below chance: results were
reported in Supplementary Table S2). In detail, the accuracy in the pic-
torial presentation form reached a value of 77 ± 6% (mean accuracy ±
standard deviation; chance level: 50%), in the verbal visual form 63 ±
9%,while in the two verbal auditory forms in sighted and in congenitally
blind individuals resulted in classification values of 66 ± 9% and 62 ±
6%, respectively.
3.3. Different cortical scales of the category-based representation

The encoding procedure was performed not only to obtain a mere
accuracy value for the discrimination of nouns in each presentationmo-
dality, but also to identify the cortical regions consistently involved in
semantic processing across participants. Specifically, a posterior proba-
bility map was built using the single individual brain masks that com-
prised the most informative voxels detected during encoding. Two
thresholds were arbitrarily selected (p N0.50 and p N0.25) correspond-
ing to voxels that were present in at least 50% and 25% of the individual
maps, respectively. Therefore, two brain networks with different exten-
sion and composition were retained: these two levels, that we labeled
as small-scale and large-scale, provided the opportunity to measure the
information content at different scales of neural representation and to
characterize how knowledge organization is affected by the definition
of the semantic system at a cortical level.

First, at a probabilistic threshold of p N 0.50, a set of regions, relative-
ly limited in extension and anatomically well-defined identified the
small-scale level (Fig. 4A). Seven regions survived to this probability
threshold. Fivewere localized in the left hemisphere: RetroSplenial Cor-
tex (RSC) and Parahippocampal (PH), Lateral Occipital (LO), Temporo-
Parieto-Occipital (TPO) and Inferior Parietal (IP) cortices. Conversely,
RSC and TPO were also located in the right hemisphere. Volumes and
anatomical location of the clusters included in the small-scale level
were reported in detail in Supplementary Table S3.

Second, applying a probabilistic threshold of p N 0.25, a set of broadly
extended cortical networks was identified, thus defining the large-scale
level (Fig. 4B). Within this level, four extended clusters survived to the
probability map procedure. Two of them were located in the left hemi-
sphere: a large posterior semantic network (PSN) that merged PH, LO,
TPO and IP regions (as defined in the small-scale representation), and
an anterior semantic network (ASN) that encompassed motor, ventral
premotor and dorsolateral prefrontal regions. Moreover, in the right
hemisphere, similarly to the left one, a large PSN was present. Finally,
at the large-scale, the left and right RSCmerged in a unique cluster with-
in the Parieto Occipital (PO) cortex.

Although this encoding procedure highlighted the regions involved in
semantic processing, additional approaches were employed to fully char-
acterize the information content (Naselaris et al., 2011). In detail, as rep-
resentational similarity analysis offers the possibility to express data as
adimensional measures, brain activity patterns were evaluated across
the presentation modalities to assess any similarities (i.e., higher level,
modality-independent content) or differences (i.e., low-level, sensory
modality-dependent processing) and were then compared to the behav-
ioral representations to determine their binding with the linguistic
output.

Nonetheless, this technique evaluated the representational space as
a whole and could not assess effectively the existence of specific
category-based representations or similarities across sensory modali-
ties. Therefore, a multivariate method based on rank accuracy verified,
in each region, which categories could be clearly distinguished
(Mitchell et al., 2004). Additionally, a measure of category preference
was defined as a bias that indicates a preferential encoding of features
related to specific categories, independently from sensory modality
and subject variability.



Fig. 4.Regions derived from probability maps. The small-scale level in panel A comprises: in left hemisphere, the Parahippocampal (PH), the Lateral Occipital (LO), the Inferior Parietal (IP)
regions and the bilateral Temporo-Parieto-Occipital (TPO) junction and the RetroSplenial Cortex (RSC). The large-scale level in panel B comprises: two large posterior semantic networks
(left and right PSN), an anterior semantic network (left ASN) and the bilateral Parieto Occipital (PO) cortex.
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3.4. Describing the information content at the small-scale level

Within the small-scale level, an assessment of the information con-
tent in each region was performed: the obtained results were depicted
in Figs. 5A and 6A (p b 0.05, corrected for multiple comparisons) (Sup-
plementary Figure S4 and S5).

Three distinct pattern of correlation among representational spaces
could be isolated.

In left PH and left IP, representational spaces exhibited a common
structure across sensory modalities, thus suggesting a sensory-
independent processing. In addition, in left PH and left IP, a significant
correlation was observed by comparing the behavioral and the neural
Fig. 5. Correlations between presentation modalities at the small-scale and large-scale levels. T
correlated to each other (p b 0.05, Bonferroni–Holm corrected) within the regions extracted
Non-Significant (NS) correlations. BD: Behavioral Data based on representational spaces in
visual form; Sa: Sighted verbal auditory form; Ba: Blind verbal auditory form. For regions label
representational spaces, hence indicating a high similarity between lan-
guage and brain activity. Moreover, an overall ability to discriminate be-
tween categories across participants and presentation modalities was
found. However, moving to a finer description, a category preference
across subjects and sensory modalities could be assessed for artificial
places in left PH and tools and fruits in left IP.

In left LO, verbal visual and verbal auditory stimuli in sighted indi-
viduals presented comparable representational spaces, while the verbal
auditory space in blind individuals shared a similar structure to the pic-
torial one of sighted participants, thus suggesting a functional reorgani-
zation of LO in blind individuals. Furthermore, only in blind individuals
the behavioral and the neural representational spaceswere significantly
he representational spaces generated from neural activity and from behavioral data were
from the small-scale (Panel A) and large-scale levels (Panel B). White squares indicate
the blind and the sighted linguistic data; Sp: Sighted pictorial form; Sv: Sighted verbal
s please refer to the Fig. 4.



Fig. 6.Rank accuracies of the semantic categorieswithin presentationmodalities and scale levels. Classification rank accuracies (p b 0.05, FDR corrected) and category preferencemeasures
were estimated (p b 0.05, Bonferroni–Holm corrected) within the regions extracted from the small-scale (Panel A) and large-scale levels (Panel B).White squares indicate Non-Significant
(NS) accuracies. Sp: Sighted pictorial form; Sv: Sighted verbal visual form; Sa: Sighted verbal auditory form; Ba: Blind verbal auditory form. For regions labels please refer to Fig. 4.
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correlated, hence supporting a pivotal role of this region in the reorgani-
zation of semantic knowledge subsequent to blindness. Finally, in left
LO, an overall ability to recognize categories across presentationmodal-
ities was retained, without a category preference.

In another set of regions, including bilateral TPO and RSC, represen-
tational spaces significantly shared a common structure across pictorial,
verbal visual and verbal auditory stimuli in sighted individuals only,
while congenitally blind participants had a unique representational
space. Interestingly, the highest accuracies during stimulus discrimina-
tion were found in left TPO in both sighted and congenitally blind indi-
viduals, while partial discriminations were found in right TPO, right RSC
and left RSC, especially for categories in the pictorial form. In both RSCs,
natural and artificial places were also distinguishable in almost all the
presentation modalities and retained a category preference. Overall
these results suggested that visual perception strongly shapes the rep-
resentational spaces of these regions, even if their category preference
is not substantially hampered by blindness.

3.5. Describing the information content at the large-scale level

Similarly to the small-scale, the same analyses were performed on
the large-scale level as depicted in Figs. 5B and 6B (p b 0.05, corrected
for multiple comparisons) (Supplementary Figure S6 and S7).

First, by correlating the representational spaces generated fromneu-
ral activity, a significant, unique spacewas observed across presentation
modalities in bilateral PSN and left ASN. Conversely, in the PO cortex, a
common spacewas found across pictorial, verbal visual and verbal audi-
tory stimuli in sighted individuals only, while the blind one had a differ-
ent structure, consistent with the small-scale results of the RSCs.

Second, by comparing the behavioral data with the representational
spaces generated from brain activity, a significant correlation across all
presentation modalities was detected in the left PSN only. Indeed, left
PSN retained the highest association (r= 0.55± 0.12,mean correlation
across modalities ± standard deviation) between brain activity and the
linguistic behavioral data across all the identified regions, both at the
small- and large-scale levels. Therefore, the unsupervised arrangement
of the forty nouns from the behavioral data and from their neural coun-
terpart in left PSN resulted to be highly similar (Fig. 2). Indeed, the
match between the category-based representation of the behavioral
data and the neural activity of left PSN was evident also when the pre-
sentation modalities were analyzed separately, as depicted in Fig. 7. In
addition, in the left PSN, the highest overall ability to discriminate be-
tween categories in all the presentation modalities was found, without
a category preference.

3.6. Information content measures within primary sensory areas of stimu-
lus presentation modalities

In addition to the region extracted from the probability maps, two
regions (i.e., Heschl Gyri -HG- and the Calcarine Sulci -CalS-) were
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added. Indeed, these primary sensory regions allowed us to assess
whether low-level perceptual features might account for the results
found at the small- and large-scale levels. The obtained results were
depicted in Figs. 5A and 6A (p b 0.05, corrected for multiple compari-
sons) (Supplementary Figure S4 and S5).

Within the primary sensory regions, both the representational
spaces of HG and CalS did not show significant correlations across pre-
sentation modalities. Moreover, when comparing the behavioral repre-
sentation with the spaces generated from brain activity patterns, no
significant correlations were found. Finally, in the HG and CalS cortices,
only few categories were significantly classified and no category prefer-
ence was identified.
4. Discussion

In this study, brain responses were measured with fMRI during se-
mantic processing of forty concrete nouns across different sensory mo-
dalities in a sample of sighted and congenitally blind individuals. Using
stimuli belonging to a relatively large number of semantic categories
and a methodological procedure to describe information content in
the brain, we aimed at disentangling the role of low-level sensory-
based information from high-level semantic features. Specifically, com-
parison of data obtained from sighted and congenitally blind individuals
enabled us to identify the contribution of visual sensory experience to
conceptual representation. Furthermore, representational analysis was
performed to determine how knowledge organization is affected
when the analysis is focused onto two different levels of information or-
ganization in the cortex: a small-scale level limited to region-specific
contents, and a large-scale level that relies, as a whole, on a distributed
network of regions engaged during the processing of semantic informa-
tion. Finally, by using behavioral data from both sighted and congenital-
ly blind individuals, patterns of brain activity across sensory modalities
were compared to linguistic production.

The overall category-based organization of conceptual knowledge
did not differ across presentation modalities or between sighted and
congenitally blind individuals. Specifically, regional differences within
patterns of neural activity across the visual and auditory modalities
and between groupswere observed only when the analyses were limit-
ed to the small-scale level. In contrast, patterns of neural activity within
the wider semantic cortical network appeared to be independent from
both the sensory modality of stimuli presentation and (lack of) visual
experience. Moreover, these patterns were correlated with linguistic
production.
Fig. 7.Multidimensional scaling in the left Posterior Semantic Network. Picture shows the
scaling generated from brain activity in the left Posterior Semantic Network for each
presentation modality separately, along with their average (filled circle) and the
behavioral representation (empty circle). Sp: Sighted pictorial form; Sv: Sighted verbal
visual form; Sa: Sighted verbal auditory form; Ba: Blind verbal auditory form.
4.1. Supporting a category-specific knowledge organization

The analysis of neural patterns by the means of a machine learning
approach based on encoding techniques (Mitchell et al., 2008;
Naselaris et al., 2011) was able to discriminate significantly the forty
nouns across all presentation modalities and groups. The highest accu-
racy was reached in the pictorial form, in line with findings from other
studies with similar methodologies and experimental paradigms
(Chang et al., 2011;Mitchell et al., 2008; Pereira et al., 2013). Accuracies
were above chance for verbal visual and for verbal auditory modalities
as well, in both sighted and congenitally blind individuals. The success
of the encoding model in discriminating the stimuli within fMRI-
measured patterns of neural responses across individuals indicates
that sighted and congenitally blind individuals share a common,
category-based representation of knowledge.

4.2. Sensory-based informationmodulates neural activity at the small-scale
level

The choice of two different threshold levels for discussing the prob-
abilitymaps represented an innovative procedure adopted in this study:
a higher threshold generated amap showing how semantic information
is organized at a small-scale, regional level, whereas a lower threshold
identified a map displaying the large-scale distribution of information
across a wide extension of cortex. While most of the same voxels con-
tributed to both maps, their information content changed according to
the ‘level of detail’ of the analysis. Specifically, these large-scale and
small-scale maps were characterized by distinctive properties: the
large-scale level comprised regions that did not show a preference for
semantic categories and showed a consistently strong correlation with
the behavioral representations and across presentation modalities. On
the contrary, at the small-scale level, it was possible to identify regions
with information content that showed category preferences, was only
partially correlated to behavioral data and mainly retained a modality-
dependent structure.

In detail, the small-scale level showed a mostly left-lateralized net-
work involved in semantic processing, including left PH, RSC, LO, TPO,
IP, while only two regions (i.e., RSC and TPO) were located on the
right hemisphere (Binder et al., 2009; Price, 2012).

Among the identified regions, the highest discrimination accuracies
were shown in the TPO for almost all categories and across modalities.
Our TPO region mainly overlapped with the angular gyrus, a crucial re-
gion of the semantic network which is considered as a high-level pro-
cessing area, due to its anatomical location interconnecting the visual,
spatial, auditory and somatosensory systems (Binder et al., 2009). Inter-
estingly, while sighted individuals shared a common representational
space across pictorial, verbal visual and verbal auditory forms, congeni-
tally blind participants had a unique space, but the information content
in TPO in blind individuals was still able to discriminate among catego-
ries. In addition, only the pictorial condition in TPO significantly
matched linguistic production. Since brain activity patterns in sighted
showed a common representational space across presentation modali-
ties and differed as compared to blind, we could assume that visual per-
ception and imagery shape information encoding in TPO. Nonetheless,
TPO also plays a role in semantic processing of non-visual inputs in
blind participants.

Another node of the semantic network was the RSC. As for the TPO,
sighted individuals shared a common representational space acrossmo-
dalities, while the representation in congenitally blind participants was
different. The similarity between the behavioral and the neural repre-
sentational space of left RSC was significant in the pictorial condition
only. In addition, a broad discrimination of categories in the RSC was
found mainly in the pictorial form, while artificial and natural places
were successfully classified and showed a category preference across
modalities. Indeed, the RSC recruitment during processing of spatial fea-
tures and in object-context integration (Vann et al., 2009) may explain
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the categorical bias for natural and artificial places found in this region.
As for TPO, the overall results indicate that vision does shape informa-
tion encoding within this region.

A pivotal node during the processing of shape features also in se-
mantic tasks is LO (Bedny et al., 2011; Devereux et al., 2013;
Fernandino et al., 2015; Lane et al., 2015; Peelen et al., 2013). In LO,
enough information was retained to discriminate across almost all the
categories in visual as well as in auditory modalities, without a category
preference. Interestingly, representational spaces indicated that LO
shows a common structure for verbal auditory and verbal visual modal-
ities, while the representational space in the blind subjects correlated
with the representation of the pictorial form. The similarity between
the auditory space in the blind group and the pictorial space in sighted
subjects is in linewith results from other studies that identified LO abil-
ity to process ‘visual’ features of object form across visual, auditory and
tactile tasks (Amedi et al., 2007; Kim and Zatorre, 2011; Peelen et al.,
2013; Peelen et al., 2014; Pietrini et al., 2004; Renier et al., 2010;
Striem-Amit et al., 2015; Strnad et al., 2013). Recently, in a semantic
category-based experiment, Wang and colleagues demonstrated that
functional patterns in the posterior lateral parts of the visual cortex
across several categories were comparable between blind and sighted
individuals (Wang et al., 2015). Our results extend the above findings
by directly assessing the high-level semantic representation in LO in
congenitally blind individuals.

Within the nodes of the semantic network, only PH and IP exhibited
a modality-independent behavior. In the PH, the overall ability to dis-
criminate among categorieswasmaintained (with the exception for liv-
ing beings, like mammals and birds) with a category preference for
artificial places. The representational spaces of all modalities shared a
unique common structure that was also congruent with the behavioral
representation. In the literature, this region has been credited with pro-
cessing of high-level visual content, like scenes and complex environ-
ments (Epstein and Ward, 2010; Park et al., 2011), and has also been
identified as a core region of the semantic system (Binder et al., 2009;
Bruffaerts et al., 2013). Indeed, the role of medial temporal lobe regions,
including PH, may be related to the formation of declarative memories
in the retrieving and processing of semantic properties, as suggested
by studies in patients with brain lesions, semantic dementia or amnesia
(Levy et al., 2004).

Finally, a high ability to discriminate categories amongmodalities was
found in IP, with category preferences for tools and fruits. As in PH, the
representational space of all modalities shared a unique common struc-
ture that was also consistent with linguistic representation (Mahon
et al., 2010). Recently, a neurosemantic study highlighted the role of IP
for representing sensory-motor features (e.g., affordance)within a similar
set of concrete nouns (Just et al., 2010). Thus, the tool-related preference
may be actually related to object-action interactions (Fogassi et al., 2005),
and suggests that IP may play a key role in extracting semantic attributes
relevant for action (Price, 2012; Stoeckel et al., 2009).

4.3. Towards a more abstract, supramodal semantic organization at the
large-scale level

Themap at the lowest threshold identified four networks: a left pos-
terior semantic network (PSN), including left PH, LO, TPO and IP; a left
anterior semantic network (ASN), including motor, ventral premotor
and dorsolateral prefrontal cortex; a right PSN, including the homolo-
gous regions of the left one; and a region within the Parieto Occipital
(PO) cortex. All these regions, apart from PO cortex, showed high corre-
lations across the representational spaces related to the individual mo-
dalities, suggesting a modality-independent processing of semantic
features. Moreover, the highest correlation between brain activity and
the behavioral semantic space as well as the highest accuracies when
discriminating between categories were found in left PSN, pointing to
a direct link between the information stored in this network and the
output expressed by language. Finally, no category preferences were
exhibited in any network, indicating a broader ability to retain semantic
knowledge at the large-scale level.

At a more general level, the large-scale approach implies that during
the functional inference of brain regions, only multivariate analyses
were able to take into account the high-dimensional cortical activity
during semantic processing and to compare neural contents with be-
havioral information (Haxby et al., 2014). Nonetheless, a critical issue
with distributed representations may relate to how multiple sources
of information (i.e., brain regions) are integrated (Fedorenko and
Thompson-Schill, 2014). At our large-scale level, the information con-
tent of the whole cortex of interest resulted from a merely linear
weighting of information across voxels: using such an approach, we ob-
tained a representational space showing the highest correlation with
thebehavioral data. Nevertheless, the humanbrainmightweight the in-
formation with different criteria (e.g., with different weights for each
voxel or using nonlinear criteria). This issue remains critical to under-
stand how conceptual representations are formed at the neural level.
Our large-scale level resulted from the spatial integration of the informa-
tion content of multiple voxels. Further studies will have to investigate
whether this distributed representation is associated with a near-
simultaneity of neural activity spreading across the large-scale map, as
previous observations suggested (Pulvermuller et al., 2009; Sudre
et al., 2012).

4.4. Primary sensory areas provide a minimal contribution to conceptual
knowledge

Two regions, theHeschl Gyri and the Calcarine Sulci, alsowere defined
to evaluate the information contentmeasures. As expected, no significant
correlations were found between brain activity in these regions and the
linguistic output across presentation modalities. Only a few categories
were discriminated above chance, likely due to their psychophysical fea-
tures (e.g., specific visual spatial frequencies for places and vehicles) or
psycholinguistic characteristics (Supplementary Figure S1). However, no
category preferences were identified, overall suggesting that the visual
and auditory primary cortical regions are strictly unimodal and do not
contribute significantly to high-level semantic representations.

4.5. How the small-scale and the large-scale levelsmay coexist? Existence of
modality- and category-specific responses without a specific hub for se-
mantic processing

At the large-scale level, the consistency of the neural representation
across different presentationmodalities supports a pure domain-specific
organization of the conceptual knowledge that is unrelated to a specific
sensorymodality and relies on a common semantic framework, for both
the decoding of words and the recognition of pictures. Nonetheless,
the role of a low-level, sensory-based coding of information is also
sustained by the small-scale level. Hence, the domain- and modality-
specificity theories may actually coexist at different scale levels of repre-
sentation of conceptual knowledge.

Interestingly, the different functional features of the semantic process-
ing regions suggest that focal lesions may lead to several distinct conse-
quences ranging from sensory-dependent to sensory-independent
semantic impairments.

In addition, the existence of progressive levels of semantic represen-
tations would explain several clinical observations indicating that both
focal and widespread brain lesions may equally account for category-
specific deficits (Devlin et al., 2002; Moss et al., 2002), thus integrating
classical neuropsychological evidence with recent functional descrip-
tions of knowledge organization that support a semantic system contin-
uously distributed across the whole cortex (Cukur et al., 2013; Huth
et al., 2012).

Apparently, the categorial nature of semantic deficits in patients
would conflict with the functional hypothesis of a unique and extended
semantic system. In fact, according to this model (Cukur et al., 2013;
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Huth et al., 2012), the whole cortex would continuously store informa-
tion about all categories. Conversely, our functional observations con-
firmed not only an extended neural organization that discriminates
among categories, but also demonstrated how more localized cortical
clusters show a clear semantic category preference across individuals
and sensory modalities. Conceivably, small patches of cortex might
have retained the ability to process features related to the more biolog-
ically relevant categories across sensorymodalities; in the sameway, in-
formation pertaining to other less relevant categoriesmay be handled in
a modality- or subject-dependent way.

In addition, since awide network of regions is required to process se-
mantic information, our results do not support the hypothesis that con-
ceptual knowledge relies on specific hubs (e.g., Anterior Temporal Lobe)
(Rice et al., 2015; Rogers and Patterson, 2007).

4.6. Limitations

Property-generation tasks typically rely on verbal or mental enu-
meration of semantic features. Their intrinsic limitation relates to the
lack of a strictly balanced control condition. Nonetheless, their more
‘ecological’ nature (e.g., lack of task components in the hemodynamic
BOLD response, no artifacts due to verbalization)makes these tasks suc-
cessfully employed in brain functional protocols (Mitchell et al., 2008;
Simmons et al., 2008). In particular, in our experiment, the property
generation task was first performed in a behavioral study and semantic
feature normswere previously validated in larger, independent samples
of sighted and congenitally blind individuals. More importantly, even if
the fMRI property generation taskwas uncontrolled, the neural patterns
of the forty noun stimuliwere significantly discriminated in 19 out of 20
participants: consequently, the linguistic production during the behav-
ioral study, assessed using representational similarity analysis, resulted
to be significantly tied to the neural activity detected during the fMRI
task. Finally, the validity of the task is supported by the results obtained
from the pictorial presentation, which closely matched those obtained
using similar experimental designs (Mitchell et al., 2008).

Second, our sample size of twenty right-handed healthy subjects
comprised only subsamples of five individuals. While this number
may appear relatively small for a standard fMRI study using univariate
analyses for group comparisons, this is not the case for those studies,
like ours, that adopt a representational analysis and multivariate
encoding techniques. Actually, one of the main advantages of represen-
tational analysis is the possibility to obtain stable representations by av-
eraging spaces across subjects (Carlson et al., 2014; Ejaz et al., 2015;
Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008). Equally,
concerning the encoding techniques, the analyses are performed in
each subject separately and do not require large samples either
(Cukur et al., 2013; Huth et al., 2012; Mitchell et al., 2008). As a matter
of fact, while validating the methodological pipeline and determining
the impact that an increased number of subjects may have on encoding
accuracy, we did obtain data from a larger sample of subjects (n = 10)
using the pictorial presentation form. We included subgroups of five
subjects for each presentation modality, as this sample size turned out
to be adequate to pursue the study aims (Supplementary Figure S12).

Also, we should point out that the organization of conceptual knowl-
edge was here studied only through concrete nouns. Even though the
nouns used as stimuli covered a wide spectrum of semantic categories,
from artifacts to places or animals, a complete evaluation of conceptual
knowledge would require the inclusion of abstract entities.

Finally, while the use of two fixed threshold levels was subsidiary to
pursue a proper segmentation of the whole semantic network at differ-
ent scales of neural representation, the results at the large-scale level
imply a distributed and overlapping cortical representation of concep-
tual knowledge. Of note, an a posteriori evaluation of the appropriate-
ness of our arbitrary selection of two probability map thresholds
indicated that the whole semantic space defined by behavioral data
was associated to a distributed pattern of brain activity that overlaps
to our large-scale map (Supplementary Figure S10). Furthermore, this
closematching between the large-scale organization and the behavioral
data is not dependent on the voxelwise signal-to noise ratio of larger
probabilitymaps.When the threshold of theprobabilisticmapping is in-
creased, so to retain a lower number of voxels, the signal-to-noise ratio
increases, while the matching between fMRI and behavioral data de-
creases, as indicated in Supplementary Figure S11.

Additional minor methodological issues were discussed in details in
the Supplementary Materials and Methods.

5. Conclusions

To conclude, shifting the definition of the semantic system at a cor-
tical level from a smaller to a larger scale neural representation deter-
mined to what extent low-level sensory-based information and/or
high-level abstract features contribute to the organization of conceptual
knowledge.

We propose that large-scale neural representations are an effective
model to explain how the human brain processes semantic information
and how conceptual knowledge emerges. The integration of informa-
tion content across a large extent of cortex generates a unique,
modality-independent, internal representation thatmatches behavioral
data and retains the most precise definition of concepts. In contrast,
small-scale neural representations of limited regions showed category
preferences and mainly retained a modality-dependent structure.
These two distinct levels of semantic processing explain how informa-
tion progresses from a sensory-based towards a more abstract concep-
tual representation.
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