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Several unsupervised methods for hypernym detection have been investigated in distributional
semantics. Here we present a new approach based on a smoothed version of the distributional
inclusion hypothesis. The new method is able to improve hypernym detection after testing on the
BLESS dataset.

1. Introduction and related works

Our intuitions about the meaning of words allow inferences of the kind expressed in
example (1) and we want any model of lexical meaning to support such inferences.

(1) a. Wilbrand invented TNT→Wilbrand uncovered TNT

b. A horse ran→ An animal moved

Words belonging to the same semantic domain are organized into networks of
paradigmatic relations such as synonymy, antonymy, hypernymy, meronymy, and these
are related to the possible inferences that a speaker is able to make when understand-
ing a sentence. The formalization of such relations has been central to both linguistic
and computer science research, as they provide a valuable resource for many Natural
Language Processing tasks such as word-sense disambiguation or query expansion. As
symbolic models were dominating in linguistics, paradigmatic semantic relations have
long been modeled as hierarchies in semantic networks like WordNet (Fellbaum 1998).
In computational semantics, several unsupervised methods for the automatic detection
of paradigmatic relations have been investigated: here we present a new approach based
on a smoothed version of the Distributional Inclusion Hypothesis. This is an extension
of the Distributional Hypothesis, which claims that lexemes with similar distributional
properties have similar meanings. This assumption, which was implicitly introduced in
Harris’ and Firth’s works in the 50s, is the grounding idea of Distributional Semantics:
semantically similar words could be detected in similar environments, that is similar
contexts. Therefore, the semantic similarity between words can be represented in terms
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of their proximity in a semantic space, where the dimensions of the space correspond,
at some level of abstraction, to the contexts in which the words occur.

This theoretical framework is computationally implemented in Distributional Se-
mantic Models (DSMs) (Lenci 2018), which build vector spaces from large training
corpora to represent linguistic co-occurrences, and so the distributional information,
of a given word. To measure the distributional similarity, as an estimate of semantic
similarity, several measures have been proposed, the most common one being the
cosine.

Our semantic competence licences inferences of the kind expressed in (1), and we
expect Distributional Semantic Models (DSMs) to account for such inferences. The type
of relation between semantically similar lexemes may differ significantly, but DSMs
only account for a generic notion of semantic relatedness. Furthermore, not all lexical
relations are symmetrical (see example (2)), differently from most similarity measures
used in distributional semantics. Cosine similarity (equation 1), for example, which is
one of the most widely employed measures in vector space, quantifies the similarity of
two non-zero vectors in terms of the angle between them.
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As shown in Equation 1, cosine similarity is a symmetric measure, which makes it
unsuitable for modelling asymmetric relations such as hypernymy (see example (2)).

(2) a. I saw a dog→ I saw an animal
b. I saw an animal 9 I saw a dog

Automatic hypernym identification is a very well-known task in literature, which
has mostly been addressed with semi-supervised, pattern-based approaches (Hearst
1992; Pantel and Pennacchiotti 2006). Various unsupervised models have been pro-
posed: Weeds and Weir (2003) and Weeds, Weir, and McCarthy (2004) used the Informa-
tion Retrieval concepts of precision and recall as metrics to identify hypernyms, while
Clarke (2009) presented a context-theoretic framework referring to the composition of
the meaning of words. These papers introduced measures that quantify the inclusion
of a word features among the features of another word, a method which represents the
starting point of our proposal. Lenci and Benotto (2012) compared these measures and
proposed a variant called invCL (cf. Section 4.3). Another interesting work is Santus
et al. (2014), which introduced a new entropy-based measure for the unsupervised
identification of hypernym and its directionality in DSMs, starting from the assumption
that the typical contexts of a word are more informative than its hypernym contexts. In
Weeds et al. (2014) a supervised Machine Learning approach based on linear SVMs has
been employed to distinguish co-hyponyms and hypernyms.

The unsupervised hypernym detection task has typically been accomplished re-
lying on the notion of Distributional Generality (Weeds, Weir, and McCarthy 2004)
and on the Distributional Inclusion Hypothesis (DIH) (Geffet and Dagan 2005), which
represents its extension and generalization. The intuition is that, since the hyponym x is a
semantically narrower term than the hypernym y, then a number of salient distributional
features of x is included in the feature vector of y.

Here we focus on the possibility of identifying hypernyms with directional sim-
ilarity measures. In the next section we highlight some problems affecting the current
versions of the DIH. In Section 3, we introduce AHyDA, a variant of the DIH that aims at
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Table 1
Co-occurrence frequency distributions extracted from the ukWaC corpus

horse dog animal
gallop 216 – 7
bark – 869 16

addressing these problems. In section 4 we describe the experiments in which AHyDA is
compared with other state-of-the-art directional measures for hypernym identification.

2. The pitfalls of the DIH

The DIH aims at providing a distributional correlate of the extensional definition of
hyponymy in terms of set inclusion: x is a hyponym of y iff the extension of x (i.e.
the set of entities denoted by x) is a subset of the extension of y. The DIH turns this
into the assumption that a significant number of the most salient contexts of x should
also appear among the salient contexts of y. While this is consistent with the logical
inferences licensed by hyponymy (cf. sentences in example (2)), it does not take into
account the actual usage of hypernyms with respect to hyponyms. Consider for instance
the following examples:

(3) a. A horse gallops ?→ An animal gallops

b. A dog barks ?→ An animal barks

These inferences are truth-conditionally valid: whenever the antecedent is true, the
consequent is also true. However, they are not equally ”pragmatically” sound. In fact,
the fact that one uses a sentence like A dog barks does not entail that in the same situation
one would have also used the sentence An animal barks. The latter sentence would be
pragmatically appropriate only in cases in which one knows that something is barking,
without knowing which animal is producing this sound. However, the latter condition
hardly applies, since barking is a very typical feature of dogs: knowing that something
is barking typically entails knowing that it is a dog, since we know that barking is
something dogs do. The same argument also applies to the case of horse and galloping.

The problem of the DIH is that the assumption it rests on, namely that the most
typical contexts of the hyponym are also typical contexts of the hypernym, is not borne
out in actual language usage because of pragmatic constraints. The most typical contexts
of an hyponym are not necessarily the typical contexts of its hypernym. This is also
proved by a simple inspection of corpus data, as reported in Table 1. Despite in the
ukWaC corpus animal (161, 107) is more frequent than dog (128, 765) and horse (90, 437),
its co-occurrence with bark and gallop is much lower than the ones of the hyponyms: bark
and gallop are not typical contexts of animal.

If the inferences in (3) are pragmatically odd, the following ones are instead fully
acceptable:

(4) a. A horse gallops→ An animal moves
b. A dog barks→ An animal calls

Salient features of the hypernym are indeed supposed to be semantically more general
than the salient features of the hyponym. Santus et al. (2014) tried to capture this fact
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by abandoning the DIH and introducing an entropy-based measure to estimate of
informativeness of the hypernym and hyponym contexts, under the assumption that
the former have a higher entropy, because they are more general. For example, contexts
like move and call, which could be salient contexts of animal, are semantically more
general and consequently less informative than gallop and neigh, typical contexts of
horse. As entropy can be used to measure informativeness (Shannon 1948), Santus and
colleagues used it to propose a new method called SLQS (Equation 2) and defined as
the reciprocal difference between the semantic generality Ew1

and Ew2
of two terms w1

and w2. Each Ewi
is based on the word most associated contexts entropy. The formula is

asymmetric: SLQS > 0 ifEw1
< Ew2

, SLQS < 0 ifEw1
> Ew2

. So, if SLQS(w1, w2) > 0,
w1 is semantically less general than w2. Referring to the previous example, we expect
SLQS(horse, animal) to be negative, and SLQS(animal, horse to be positive.

SLQS(w1, w2) = 1− Ew1

Ew2

(2)

In this paper, we address the same issue by amending the DIH, to make it more con-
sistent with the actual distributional properties of hyponyms and hypernyms. There-
fore, we introduce AHyDA (Automatic Hypernym Detection with feature Augmenta-
tion), a smoothed version of the DIH: Given a context feature f that is salient for a lexical
item x, we expect co-hyponyms of x to have some feature g that is similar to f , and an
hypernym of x to have a number of these clusters of features. To remain in the animal
sounds domain, we expect a dog to bark and a duck to quack and an animal to produce
either of those sounds or to co-occur with a more general sound-emission verb.

3. AHyDA: Smoothing the DIH

All the measures implementing the DIH are based on computing the (weighted)
intersection of the distributional features (i.e., the typical contexts) of the hyponym and
the hypernym. This is then typically normalized with respect by the hyponym features.
AHyDA essentially proposes a new way to compute the intersection of the hyponym
and hypernym contexts. Given a lexical item x, we call Fx the set of its distributional
features.11 Note that features need not be pure lexical items. In general, we define a
feature f as a pair (w, σ) where w is typically a lexical item, and σ is any additional
contextual information, in the present case a syntactic pattern occurring between x and
w, as explained in section 4.1. The core novelty of AHyDA is to define a set of shared
features between the hyponym and the hypernym that, differently from standard set
intersection, relies on the expansion of each feature of the hyponym.

The idea is shown in Figure 1, which provides a simplified graphical example of
the intersection operation. Consider a case where the target horse has some feature with
gallop as a lexical item, for example a feature f = (gallop, sbj) meaning that horse is
a possible subject of gallop. Given what we have said in Section 2, we do not expect
animal to share this horse-specific property. So, instead of looking for this particular
feature among the ones of animal, we generate a new set Nhorse(gallop) of features
g = (y, σ) such that y is a neighbor of gallop and it’s a feature (with the same syntactic
relation sbj) of some neighbor of horse. Suppose that run, move, and cycle are neighbors
of gallop. As run and move are also features of some neighbor of horse (e.g., lion),
we would have Nhorse(gallop) = {gallop, run,move}. Conversely, since cycle is not a
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feature of a close neighbor of horse, it would not be included in the expanded feature set.

Figure 1
An example of smoothed intersection. Black arrows indicate semantic similarity with gallop,
countoured items are the ones included in Nhorse(gallop): move and run are included because
they are features of a neighbor of horse (not shown in the picture), while cycle is excluded because
no neighbor of horse has cycle as a feature. Therefore, gallop ends up being in the set of shared
features of animal and horse, along with eat, thanks to the overlap between the features of animal
and Nhorse(gallop).

Mathematically, for each feature f = (wf , σf ) in Fx, we define its set of neighbour-
ing features Nx(f) as follows:

Nx(f) = {g = (wg, σf )|∃y.(d (wf , wg) < α ∧ d (x, y) < β ∧ g ∈ Fy)} (3)

where d(x, y) is any distance measure in the semantic space, α and β are empirically set
threshold values. Given a feature f , its expanded set Nx (f) is therefore generated by
looking for features g such that:

r the lexical item wg is similar, in the semantic space, to the lexeme in the
feature f (i.e., wf );r g = (wg, σf ) is a feature of some neighbor of the target x.

When expanding a feature f into Nx(f), we expect to find in Nx(f) features that
express the same ”property” in different ways. We expect these features to be shared
by hypernyms more than co-hyponyms, because hypernyms are supposed to collect
features from all their hyponyms, while co-hyponyms lack those of other co-hyponyms
(e.g., lions run but do not gallop). Nx(f) is used to define the set of shared features
between Fx and Fy as:

SharedF (Fx, Fy) = {f |f ∈ Fx ∧Nx (f) ∩ Fy 6= ∅} (4)

While (gallop, sbj) does not belong to Fhorse ∩ Fanimal because it is not a feature of animal,
and does not contribute to any of the measures defined in section 4.3, it is instead in-
cluded in SharedF (Fhorse, Fanimal), because there is some feature inN(gallop, sbj)horse
that is also included in Fanimal.
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AHyDA is thus defined as follows:

AHyDA (x, y) =
|SharedF (Fx, Fy)|

|Fx|
(5)

Importantly, AHyDA only considers the average cardinality of the sets, without looking
at the feature weights. Moreover, the formula is asymmetric (like the others implement-
ing the DIH), and therefore it is suitable to capture the asymmetric nature of hypernymy.

4. Experiments and Evaluation

4.1 Distributional Space

Each lexical item u is represented with distributional features extracted from the
TypeDM tensor (Baroni and Lenci 2010). In TypeDM, distributional co-occurrences are
represented as a weighted tuple structure, a set of ((u, σ, v), κ), such that u and v are lexical
items, σ is a syntagmatic co-occurrence link between u and v and κ is the Local Mutual
Information (Evert 2008) computed on link type frequency. Hence, each lexical item u is
represented in terms of features of the kind (v, σ).

In addition to the sparse space, we also produced a dense space of 300 dimensions
reducing the matrix with Singular Value Decomposition (SVD). This additional space
was used to retrieve neighbors during the smoothing operation, as it allowed us to
perform faster and more accurate calculations for cosines. The sparse space was instead
employed to retrieve features and get their weights.

4.2 Data set

Evaluation was carried on a subset of the BLESS dataset (Baroni and Lenci 2011), con-
sisting of tuples expressing a relation between nouns.

BLESS includes 200 English concrete nouns as target concepts, equally divided
between living and non-living entities. For each concept noun, BLESS includes several
relatum words, linked to the concept by one of the following 5 relations: COORD (i.e.
co-hyponyms), HYPER (i.e. hypernyms), MERO (i.e. meronyms), ATTRI (i.e. attributes),
EVENT (i.e. verbs that define events related to the target). BLESS also includes the
relations RANDOM-N, RANDOM-J, RANDOM-V, which relate the targets to control tuples
with random noun, adjective and verb relata, respectively. By restricting to noun-noun
tuples, we got a subset containing these relations: COORD, HYPER, MERO, RANDOM-N.
Table 2 contains some examples of BLESS tuples for the noun beaver.

We preprocessed the dataset in order to exclude lexical items that are not included
in TypeDM. As reported in table 3, the distribution (minimum, mean and maximum)
of the relata of all BLESS concepts is not even, and therefore we took this into account
while evaluating our results.

4.3 Evaluation

We compared AHyDA with a number of directional similarity measures tested on
BLESS, with the goal of evaluating their ability to discriminate hypernyms from other
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Table 2
Examples of relata for the target noun beaver in BLESS.

coord hyper mero random-n

bear creature muzzle worker
cat mammal nose rose
fox rodent tail foliage

Table 3
Distribution (minimum, mean and maximum) of the relata of all BLESS concepts

relation min avg max
coord 6 17.1 35
hyper 2 6.7 15
mero 2 14.7 53
ran-n 16 32.9 67

semantic relations, in particular co-hyponyms.

Given a lexical item x, Fx is the set of its distributional features, κx(f) is the weight
of the feature f for the term x:
WeedsPrec - quantifies the weighted inclusion of the features of a term x within the
features of a term y (Weeds and Weir 2003; Weeds, Weir, and McCarthy 2004; Kotlerman
et al. 2010)

WeedsPrec(x, y) =

∑
f∈Fx∩Fy

wx(f)∑
f∈Fx

wx(f)
(6)

ClarkeDE - a variation of WeedsPrec, proposed in Clarke (2009)

ClarkeDE(x, y) =

∑
f∈Fx∩Fy

min(wx(f), wy(f))∑
f∈Fx

wx(f)
(7)

invCL - a new measure introduced in Lenci and Benotto (2012), to take into account not
only the inclusion of x in y but also the non-inclusion of y in x, moving from the idea
that a significant number of the hyponym-contexts are also hypernym-contexts, but a
significant number of the hypernym-contexts are not hyponym-context. The measure is
defined as a function of ClarkeDE (CD).

invCL(x, y) =
√

CD(x, y)(1− CD(x, y)) (8)

We used the cosine as a baseline, since it is a symmetric similarity measure and is
commonly used to evaluate semantic similarity/relatedness in DSMs. In the definition
of Nx(f), the target and feature neighbors are identified with the cosine, setting the α
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and β parameters to 0.8 and 0.9 respectively. The optimal settings of the parameter has
been identified on a subset of BLESS used as development dataset.

To avoid biases due to the relata distribution among concepts, for each target x, we
computed the minimum and maximum number of items holding a relation with x, and
performed maximum

minimum random samples where each relation is presented with minimum
relata, and then averaged the results. For example, consider the situation where x has 3
hypernyms, 6 co-hyponyms, 6 meronyms and 12 random nouns. In this situation, the
minimum number of relata for x would be 3, while the maximum would be 12. Therefore,
we would perform 4 random sampling for each relation, averaging the results in order
to obtain a singular measurement for each relation in the end.

We adopted the same evaluation methods described in Lenci and Benotto (2012):r for each target noun, given its scores agains all its relata in the dataset,
which are normalized into z-scores, we pick the nearest neighbour of the
target for each relation, thus obtaining 4 similarity scores for each BLESS
concept. The distribution of the scores is then boxplotted;r for each target noun, we rank its relata according to their scores agains the
target: for every relation, we compute the average precision (AP) of the
ranked list: the ideal case (AP = 1) for any relation is the case in which all
the relata belonging to that relation are place in the top positions of the
ranked list. For each relation, we calculated the AP for all BLESS targets and
averaged them.

4.4 Results

Table 4 summarizes the Average Precision obtained by AHyDA, the other DIH-based
measures, and the cosine. Although AHyDA’s improvement is not big in hypernym
detection, co-hyponyms get lower values of AP. The “delta” between hyper and coord is
an important diagnostic of the model’s ability to set apart these two types of relations.
Therefore, smoothing the feature intersection allows a better discrimination between the
two classes. It is worth remarking that the values for the other measures are generally
higher than those reported by Lenci and Benotto (2012), because of the evaluation
on the balanced random samples of relations we have adopted. We also reported, in
table 5, the AP values obtained through the standard measures, without employing
the feature augementation procedure. Although values for hypernyms do not change
much, the main differences are in the coord values, which are generally higher without
feature augmentation. As mentioned in section 4.1, the results for all the measures are
obtained using the sparse space. The reduced space was employed to compute the
Cosine baseline.

As regards the AP values for hypernyms, we must notice that not all hypernyms
in BLESS share the same status: some of them are what we would consider logic en-
tailments (e.g. eagle→ bird), others depict taxonomic relations (e.g. alligator→ chordate),

some are not true logic entailments (e.g. hawk ?→ predator)
Figure 2 shows the average score produced with the new measure. Here hypernyms

are neatly set apart from co-hyponyms, whereas the distance with meronyms and with the
control group, randoms, is less significative.

Figure 3 shows the average scores produced by AHyDA when applied to the
reverse hypernym pair. It is interesting to notice that in this case AHyDA produces
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Table 4
Mean AP values for each semantic relation achieved by AHyDA and the other similarity scores.
We evaluated the measures that relied on intersection (i.e., WeedsPrec, ClarkeDE, invCL)
considering the features in the set SharedF when the formula presented the features in the
intersection.

measure coord hyper mero ran-n
Cosine 0.77 0.31 0.21 0.14
WeedsPrec 0.29 0.50 0.32 0.16
ClarkeDE 0.31 0.52 0.24 0.14
invCL 0.28 0.52 0.32 0.17
AHyDA 0.20 0.49 0.33 0.23

Table 5
Mean AP values for each semantic relation achieved by the cited similarity scores, without
employing feature augmentation

measure coord hyper mero ran-n
Cosine 0.77 0.32 0.21 0.14
WeedsPrec 0.34 0.51 0.28 0.15
ClarkeDE 0.36 0.51 0.27 0.16
invCL 0.31 0.51 0.29 0.16

Figure 2
Distribution of relata similarity scores obtained with AHyDA (values are concept-by-concept
z-normalized scores)

basically the same results as random pairs. This suggests that AHyDA correctly predicts
that hyponyms entail hypernyms, but not vice versa, thereby capturing the asymmetric
nature of hypernymy.
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Figure 3
Distribution of relata similarity scores obtained with AHyDA (values are concept-by-concept
z-normalized scores), when tested on the inverse inclusion (i.e. hypernym does not entail
hyponym)

5. Conclusion

The Distributional inclusion hypothesis has proven to be a viable approach to hyper-
nym detection. However, its original formulation rests on an assumption that does
not take into consideration the actual usage of hypernyms in texts. In this paper we
have shown that, by adding some further pragmatically inspired constraints, a better
discrimination can be achieved between co-hyponyms and hypernyms. Our ongoing
work focuses on refining the way in which the smoothing is performed, and testing its
performance on other datasets of semantic relations.
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