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Abstract
This work addresses some questions about language processing: what does it mean
that natural language sentences are semantically complex? What semantic features
can determine different degrees of difficulty for human comprehenders? Our goal is
to introduce a framework for argument semantic complexity, in which the processing
difficulty depends on the typicality of the arguments in the sentence, that is, their
degree of compatibility with the selectional constraints of the predicate. We postulate
that complexity depends on the difficulty of building a semantic representation of
the event or the situation conveyed by a sentence. This representation can be either
retrieved directly from the semantic memory or built dynamically by solving the
constraints included in the stored representations. To support this postulation, we built
a Distributional Semantic Model to compute a compositional cost function for the
sentence unification process. Our evaluation on psycholinguistic datasets reveals that
the model is able to account for semantic phenomena such as the context-sensitive
update of argument expectations and the processing of logical metonymies.
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1 Argument semantic complexity

It is a well-known fact that nouns differ for their acceptability as predicate arguments.
Traditionally, linguistic theory has modeled this as a binary contrast between accept-
able vs. impossible arguments:

(1) a. The musician plays the flute in the theater.
b. * The nominative plays the global map in the pot.

Impossible arguments are those that violate the combinatorial constraints (aka selec-
tional preferences) of the predicate to such a degree that we are not able to build
any coherent representation for the described situation, like in (1-b). Recently, psy-
cholinguistic and neurocognitive research has questioned the dichotomous nature of
the phenomenon, arguing that arguments differ in their degree of acceptability, as
shown by the following sentence:

(2) The gardener plays the castanets in the cave.

Although the selectional constraints of play are satisfied both in (1-a) and (2), the latter
expresses a more unusual event. Investigations on event-related potentials (ERP)—the
electrophysiological responses of the brain to a stimulus measured with electroen-
cephalography (EEG)—have brought extensive evidence that sentences like (1-a) and
(2), despite being both semantically acceptable, have a different cognitive status. In
particular, sentences such as (2), including possible but unexpected combinations of
lexemes, evoke stronger N400 components than plausible ones. The N400 component,
originally described by Kutas and Hillyard (1980), is a negative-going deflection that
peaks around 400 ms after the presentation of the stimulus, and since its discovery
the amplitude of this component has been taken to reflect the complexity of semantic
composition: unusual combinations of lexemes require an extra cognitive effort to be
understood, as they are not coherent with the unfolding semantic representation of the
context (Baggio and Hagoort 2011; Baggio et al. 2012). We refer to this phenomenon
as argument complexity, to distinguish it from other cases of syntactic and semantic
complexities occurring during online sentence comprehension. Over the years, sev-
eral linguistic theories and computational models have been proposed to account for
processing differences between natural language sentences, among which we can cite
Dependency Locality Theory (Gibson 2000), the ACT-R based model by Lewis and
Vasishth (2005) and Surprisal Theory (Hale 2001, 2016). A common point of all
the above-mentioned frameworks is the focus on the syntactic factors of complexity,
which are sometimes identified with the length of dependencies, sometimes with the
probabilities of a given syntactic analysis in a given context, and so on. The notion of
argument complexity we analyse in this work instead concerns the semantic factors
leading to the construction of sentence meaning via predicate-argument composition.
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A different but strongly related phenomenon is (complement) coercion, in which
an argument is reinterpreted to overcome the violation of its predicate selectional
preferences (Lauwers and Willems 2011). One widely studied case of coercion is
logical metonymy, which is traditionally considered as a theoretical challenge for
classical models of compositionality (Pustejovsky and Batiukova 2019):

(3) The author began the book.

Logical metonymy is described as a type clash between an event-selecting metonymic
verb (e.g., aspectual verbs like begin) and an entity-denoting nominal object, which
triggers the recovery of a hidden event (e.g., writing). Crucially, previous research has
brought extensive evidence that such metonymic constructions also determine extra
processing costs and increased complexity during online sentence comprehension
(McElree et al. 2001; Traxler et al. 2002), apparently due to “the deployment of
operations to construct a semantic representation of the event” (Frisson and McElree
2008). Therefore, logical metonymy, as well as complement coercion in general, can
be regarded as an instance of argument complexity caused by the effort required to
repair the violation of the verb selectional preferences.

The N400 effects and the processing costs of logical metonymy suggest that “not
all arguments are processed equal”, and that the semantic complexity of an argument
depends on its compatibility with the selectional constraints of the predicate. Argu-
ment compatibility is a graded, rather than binary notion and is typically referred to
as thematic fit. Several psycholinguistic studies making use of different experimen-
tal paradigms (self-paced reading, eye-tracking, EEG, etc.) indicate that argument
complexity is determined by information about event contingencies and specific
predicate-argument combinations stored in semantic memory. This event knowledge
has a key role in human sentence processing: Verbs (e.g., eat) activate expectations
about nouns typically occurring as their arguments (e.g., pizza) (McRae et al. 1998),
and in turn entity-denoting nouns prime verbs referring to the events they typically
participate in (McRae et al. 2005). Arguments that are coherent with the activated
expectations have a lower semantic complexity and are read faster by subjects.

Moreover, priming experiments show that nouns trigger also other nouns co-
occurring as arguments in the same events (Hare et al. 2009). More in detail: (i)
nouns of events prime participants (sale-shopper) and objects (trip-luggage) typically
found at those events; (ii) locations prime people/animals and objects (hospital-doctor,
barn-hay) typically found at those locations; (iii) instrument nouns prime things on
which they are commonly used (key-door). All these event-based priming effects sup-
port the hypothesis of a mental lexicon arranged as a web of mutual expectations that
are exploited online to compute the thematic fit of the argument nouns as fillers of the
verb roles. In the literature, this knowledge contained in semantic memory is generally
referred to as Generalized Event Knowledge (GEK ), and it is acquired by humans
fromfirst-hand experience (e.g., playingmusic) and linguistic experience (e.g., talking
and reading about playing music) (McRae and Matsuki 2009).

The expectations for the predicate fillers and the resulting argument complexity
depend on wide event scenarios. As shown by some recent studies (Bicknell et al.
2010; Matsuki et al. 2011), the expectations about the likely filler of a given verb
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argument (e.g., the patient role) depend on the fillers of the other verb arguments (e.g.,
the agent). For example, given an agent noun like boxer, the most likely patient for
the verb dodge is punch, while if the agent noun is politician, something like question
will be much more likely as a patient filler. In other words, argument complexity and
thematic fit have a context-sensitive nature and are affected by the general situation
described by the sentence. Sentences including congruent argument combinations
elicit significantly smaller N400 amplitudes than incongruent ones (Bicknell et al.
2010), as they show lower processing complexity. After an analysis of the evidence
presented in the previously-cited studies, Jeffrey Elman proposed that words should be
conceived as cues to event knowledge (words-as-cues hypothesis), and that sentence
meaning consists precisely of the event representations that the lexical items in the
sentence activate (Elman 2009, 2014). As new information comes in during online
linguistic processing, new constraints on the possible interpretations of the sentence
are progressively added. Importantly, logical metonymy too is affected by the whole
configuration of verb arguments. For instance, the event recovered to overcome the type
clash depends on both the patient and the agent roles (Lascarides and Copestake 1998;
Zarcone et al. 2014). Therefore, argument complexity in general is a compositional
phenomenon that must be addressed within the context of the cognitive processes
leading to sentence meaning construction.

1.1 Argument complexity in distributional semantics

Computational models of argument complexity have been extensively investigated in
distributional semantics (Lenci 2018). Erk et al. (2010) were among the first authors
to measure the correlation between human-elicited thematic fit ratings and the scores
assigned by a syntax-based Distributional Semantic Model (DSM). The plausibility
of each verb-argument pair was computed as the similarity between new candidate
nouns and previously attested exemplars for each specific verb-role pairing, as already
proposed in Erk (2007). Baroni and Lenci (2010) adopted an approach to thematic fit
modeling that has become dominant in the literature: For each verb role, they used
their Distributional Memory (henceforth DM) framework to build a prototype vector
by averaging the dependency-based vectors of its most typical fillers. The higher the
similarity of a noun with a role prototype, the higher its plausibility as a filler for that
role. Lenci (2011) later extended this model to account for the dynamic update of the
expectations on an argument, depending on how another role is filled. By using the
same DM tensor, this study tested an additive and a multiplicative model (Mitchell
and Lapata 2010) to compose and update the expectations on the patient filler of the
subject–verb–object triples of the dataset used in the study by Bicknell et al. (2010).
More recent contributions aimed at improving the original model by Baroni and Lenci
(2010), either by using semantic role labels instead of syntactic dependencies as the
context for the vectors (Sayeed et al. 2015) or by clustering the verb fillers in order
to better deal with polysemy (Greenberg et al. 2015). Another variant of the model,
introduced by Santus et al. (2017), achieves better results by replacing cosine with a
metric based on the semantic feature overlap between the prototype and the candidate
fillers.
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A different approach to the thematic fit problem was proposed by Tilk et al. (2016),
whopresented twoneural architectures for generating probability distributions over the
possible arguments for each thematic role. Their models took advantage of supervised
training on two role-labeled corpora to optimize the distributional representation for
thematic fit modeling, and managed to obtain significant improvements over the other
systems on almost all the evaluation datasets. They also evaluated their model on the
task of composing and updating verb argument expectations, obtaining a performance
comparable to Lenci (2011). More recently, Chersoni et al. (2019) proposed a general
distributional model for incremental sentence meaning representation that has been
tested on human ratings of compositional argument plausibility. A closely related
notion to thematic fit is the one of selectional preference (Resnik 1997), with the main
difference being that the former refers to a gradient compatibility between arguments
and thematic roles, while the latter involves discrete semantic types (Lebani and Lenci
2018). The acquisition of selectional preferences has mostly been seen as an auxiliary
task for improving the performance of systems with different goals, such as semantic
role classification (Collobert et al. 2011; Zapirain et al. 2013; Roth and Lapata 2015)
or coreference resolution (Heinzerling et al. 2017). Some recent and some notable
exceptions are the studies by Zhang et al. (2019, 2020), which introduced large-
scale evaluation benchmarks for the task and proposed multiplex embedding models
incorporating both the overall semantics of a word and its relational dependencies in
context.

Concerning theNatural Language Processing (NLP) research on logicalmetonymy,
previous studies focused on two different and complementary aspects of the phe-
nomenon.On the one hand, the retrieval of the covert event,which has been approached
by means of either probabilistic methods (Lapata and Lascarides 2003) or distribu-
tional similarity models (Zarcone et al. 2012). On the other hand, the modeling and
reproduction of the processing differences observed in the experimental literature, a
problem mainly tackled, again, with DSMs (Zarcone et al. 2013). In our view a com-
putational model, in order to provide a complete account of logical metonymy and its
processing consequences, should be able to deal with both of these aspects.

Leveraging and extending these previous results, we introduce in Sect. 2 a distribu-
tional model of argument complexity inspired by theMemory, Unification and Control
framework by Hagoort (2013). Our proposal has two major elements of novelty. First
of all, it is able to subsume the gradient nature of argument acceptability in (2) and
the coercion in (3) under the same general computational approach to argument com-
plexity. Secondly, it is grounded on the assumption that distributional semantics can
provide a useful model of (at least a subset of) GEK and of its role in constructing
compositional semantic representations. In Sect. 3, we evaluate our model on two
psycholinguistic datasets, respectively, in the task of composing and updating verb
argument expectations and in modeling logical metonymy.

2 A distributional model for argument complexity

The objectives of our model are (i) to build an incremental distributional represen-
tation of a sentence, and (ii) to introduce a compositional weight to account for its
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argument complexity.We assume that sentences represent events consisting of various
participants playing different roles, and that their argument complexity depends on
two main factors: (a) the availability and salience of “ready-to-use” event information
already stored in GEK and (b) the cost of unifying the GEK portions activated by
the context into a coherent semantic representation, a cost mainly depending on the
mutual semantic coherence of the event participants. We thus predict that sentences
containing highly familiar argument combinations are easier to process than sentences
containing novel ones, like the one in (2). Moreover, the complexity of novel combi-
nations depends on how “compatible” they are with the event knowledge stored in the
semantic memory.

GEK is assumed to be a highly structured repository, organized under various
levels of complexity, granularity, and schematicity. It includes information about fully-
specified micro-events (e.g., students reading books, gardeners cutting grass, etc.) and
about more complex scenarios. In fact, sentences can be regarded as partial descrip-
tions of events, since many details about described situations can be left unspecified,
and it is up to the comprehender to infer the missing parts by retrieving relevant infor-
mation in GEK : for example, when we hear a sentence like The soldier killed all the
enemies, we could infer that he used some sort of weapon (e.g., a rifle, a machine
gun, etc.) to perform the killing event. Consistently with the psycholinguistic find-
ings reviewed in Sect. 1 and with Elman’s words-as-cues hypothesis, each linguistic
expression works as a cue for recovering portions of GEK . Not only verbs, but also
nouns (and possibly adjectives) activate GEK : more specifically, they activate the
events involving those entities. For instance, hearing the noun student in a sentence
leads to the activation of student-related events in GEK . As long as comprehenders
manage to retrieve the “right” event scenario, they are also able to anticipate upcoming
arguments in the sentence, and fill in unexpressed elements (e.g, like the covert event
in logical metonymic sentences).

Comprehension consists in recovering themost likely event expressed by a sentence
(Kuperberg 2016), and it is an incremental process leading to the construction of a
semantic representation, which is in turn obtained by combining the subsets of GEK
activatedby thedifferent constructions in the sentence.Analogously toHagoort (2013),
we distinguish between two components of our model:

– a Memory component, representing the storage of event structures in GEK con-
tained in the semantic memory. In this study, we only consider the GEK subset
derived from linguistic experience, which we model with distributional informa-
tion extracted from corpora;

– a Unification component, which combines the GEK portions activated by lin-
guistic expressions, in order to generate new and more complex structures.

2.1 Thememory component: modeling GEK in long-termmemory

In our framework, we assume that each lexical item wi activates a set of events
〈e1, σ1〉, . . . , 〈en, σn〉 such that ei is an event in GEK , and σi is an activation score
computed as the conditional probability P(e|wi ). In other words, the activation level
of e is quantified as its probability given the context word wi . Therefore, processing

123



A distributional model of argument complexity

Fig. 1 A fragment of the DEG representing GEK with several instances of events, each represented by a
sequence of co-indexed e. The σ are the activation scores of events

a linguistic expression in a given sentence will lead to the activation of a set of events
in the semantic memory, each one associated to a σ score.

In a previous work, Chersoni et al. (2019) represented GEK with a Distributional
Event Graph (DEG) that contains events extracted from dependency parsed sentences
(Fig. 1).1 The DEG nodes were distributional vectors (i.e., embeddings), meant as
“out-of-context” encoding of lexical items. Notice that, in principle, any type of dis-
tributional vector can be used to this purpose. The edges corresponded to syntactic
relations as an approximation of deeper semantic roles (e.g., the subject relation for
the agent, the direct object relation for the patient, etc.), and they were weighted with
activation scores identifying the most prototypical event-entity links.

The approach that we followed for representing events, in this work, is to extract
syntactic joint contexts (Chersoni et al. 2016b). A syntactic joint context includes the
whole set of dependencies of a given lexical head (ignoring determiners andmodifiers),
and we assume it as a surface representation of an event. For example, from the
dependency structure of the sentenceThe student reads a book we extract the following
event corresponding to a path in the DEG in Fig. 1:

(4) [E2 nsubj:student head:read dobj:book]
Events in GEK can be cued by several lexical items, with a strength depending on
the salience of the event given the item. For example, the event above is cued by stu-
dent, read and book. Besides complete events, we assume GEK to contain schematic
(i.e., underspecified) events too, obtained by abstracting away from one or more argu-
ments. For instance, from the sentence The student reads a book we also generate the
schematic event [E1 nsubj:student dobj:book] describing an underspecified event
schema with a student agent and a book patient, which can be instantiated by different

1 We represent dependencies according to the Universal Dependencies annotation scheme:
http://universaldependencies.org/.
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actions (e.g., reading, borrowing, etc.). Therefore, GEK is not a flat list of events, but
a structured repository of prototypical knowledge about event contingencies.

2.2 The unification component: building semantic representations

Language can be seen as a set of instructions that the comprehender uses to represent
the situation described by the speaker. In our framework, the event currently being
processed is stored in a data structure called Semantic Representation (henceforth
SR), which is akin to Discourse Representation Structures in DRT (Kamp 2013;
Chersoni et al. 2019). Comprehension always occurs within the context of an existing
SR: during online sentence processing, lexical items cue portions of GEK and the
SR is dynamically updated by unifying the current content with the new information.

We anticipated that, in our view, the goal of sentence comprehension consists in
recovering (reconstructing) the event e that the sentence is most likely to describe.
The event e is the event that best satisfies all the constraints set by the lexical items in
the sentence and by the active SR. Letw1, w2, . . . , wn be an input linguistic sequence
(e.g., a sentence) that is currently being processed. Let SRi be the semantic representa-
tion built for the linguistic input untilw1, . . . , wi , and let ei be the event representation
in SRi . When we process wi+1:

1. GEK [wi+1], the event knowledge associatedwithwi+1 in the lexicon, is activated;
2. GEK [wi+1] is integrated with SRi to produce SRi+1.

We model semantic composition as an event construction and update function
F , whose aim is to build a coherent SR by integrating the GEK cued by the linguistic
elements that are composed:

F(SRi ,GEK [wi+1]) = SRi+1. (1)

The composition function carries out two distinct processes:

– F unifies the events activated by two lexical items into a new complex event:

(5) [Ei nsubj:mechanic dobj:engine] � [E j nsubj:mechanic head:check] =
[Ek nsubj:mechanic head:check dobj:engine]

In this example, the event of a mechanic performing an action on an engine acti-
vated by the noun mechanic and the event of a mechanic checking something
activated by the verb check are unified into a new complex event of a mechanic
checking an engine;

– F weights the unified event ek with a pair of scores 〈θek , σek 〉, weighting ek with
respect to its semantic coherence θek and to the salience σek of its activation.

Semantic coherence and activation salience, which will be illustrated in the following
section, are the essential factors of our model of the argument complexity of semantic
representations.
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2.2.1 The cost of unification: semantic coherence

We introduce the score θek to quantify the degree of semantic coherence of a unified
event ek , under the assumption that such coherence depends on themutual typicality
of its components. Consider the following sentences:

(6) a. The student writes a thesis.
b. The mechanic writes a sonnet.

The event represented in (6-a) has a high degree of semantic coherence because all its
components are mutually typical: student is a typical subject for the verb write and
thesis has a strong typicality both as an object of write and as an object occurring in
student-related events. Conversely, the components in the event expressed by (6-b)
have a low level of mutual typicality, thereby resulting into an event with much lower
semantic coherence. Although the sentence is perfectly understandable, the described
situation is more unusual.

Verb-argument typicality is measured in the computational and psycholinguistic
literature with thematic fit values (McRae et al. 1998). In the present proposal, the
notion of thematic fit is extended in order to account for the degree of coherence of
the events described by whole sentences. In computational approaches (Baroni and
Lenci 2010), thematic fit is modeled with vector cosine in the following way:

Given a list of lexemes c1, . . . , cn occurring in the same event structures as b
with the role si and ordered by their decreasing salience, θ(a|si ,b) (the thematic
fit of a given b and the role si ) is the cosine between a and the prototype vector
built out of the k top values c1, . . . , ck, with for 1 ≤ k ≤ n.

For instance, the thematic fit of student as an agent in writing-events is given by the
cosine between the embedding of student and the centroid vector built out of the k
most salient agents of write. Similarly, the typicality of thesis as a patient related to
student (i.e., as a patient in events involving student as an agent) could be assessed by
measuring the cosine between the embedding of thesis and the centroid vector built
out of the k most salient patients related to student, and the typicality of thesis as a
patient of write can be measured in the same way. In other words, typical fillers of a
given role are used to build a sort of abstract distributional representation of an “ideal”
filler for that role, and the thematic fit of a new candidate is computed as the distance
between its embedding and the vector of the ideal filler.

Although we adopt the same approach for measuring the typicality of the partic-
ipants, an important problem is how the partial scores of single event-participant
combinations are combined in a global semantic coherence score. In our work, we
experimented with two different solutions:

– as in Chersoni et al. (2016a) and Chersoni et al. (2017a), semantic coherence
is assessed as the product of all the partial thematic fit scores for all the event-
participant (and inter-participant) combinations within a sentence;2

2 Beyond traditional calculations of thematic fit for the fillers of verb roles, we also compute scores for a
generic co-participant relation between filler nouns, as experimental studies report processing facilitations
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– similarly to Lenci (2011) and Chersoni et al. (2017b), semantic coherence is
assessed as the cosine similarity between the arguments of the sentence and the
prototype vector of current argument expectations, which is dynamically updated
as new information from newly-saturated arguments comes in.

In the first case, the global score θek of an event ek is defined as:

θek =
∏

a,b,si∈e
θ(a|si ,b) (2)

For example, given a sentence like The student drinks beer, the score θek would be
the product of three factors: (i) the thematic fit of student as an agent (AG) of drink;
(ii) the thematic fit of beer as a co-participant (CO) of student; (iii) the thematic fit
of beer as a patient (PA) of drink. Thus, θek would be computed as:

θek = θ(student|AG,drink) · θ(beer|CO, student) · θ(beer|PA,drink). (3)

The product between thematic fit scores directly captures the idea of the mutual typi-
cality between all event participants. Indeed, as an effect of the product, if the partial
thematic fit score between an argument pair is low (e.g., the agent–patient combina-
tion), this will decrease the semantic coherence of the entire event. In the experiments
in Sect. 3, we refer to the models using this computation of semantic coherence score
as ThetaProd models.

The alternative approach consists in building a prototype vector for the final argu-
ment that needs to be predicted (e.g., the patient in an agent–verb–patient triple) using
a single representation that incorporates the updated expectations for the verb given
the previously-realized arguments (Lenci 2011; Chersoni et al. 2017b). In this model,
the update on the expectation EX for a given filler caused by a new input word (e.g.,
a verb combining with an agent) is modeled with a function f (x) that combines the
prototypes built out of the typical fillers for every word wi .

EXrole(〈w1,w2〉) = f (EXrole1(w1), EXrole2(w2)). (4)

Once the expectation vector has been calculated, the f iller fit for a role can be
computed by measuring the cosine similarity between the f iller and the expectations
vector. For example, the procedure to estimate how likely is burglar as a patient of
the policeman arrested the... is the following:

1. we first build a prototype vector out of the embeddings of nouns typically co-
occurring with the agent policeman;

2. then we build another prototype vector out of the embeddings of typical patients
of the verb arrest;

3. we combine the prototype vectors with f (x);

Footnote 2 continued
also due to inter-arguments typicality (e.g. the facilitation for sentences with typical agent–patient combi-
nations in Bicknell et al. 2010).
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4. at this point, we can estimate the f iller thematic fit by calculating its cosine
similarity (cosSim) to the updated prototype vector:

EXPA(burglar|〈police, arrest〉) = cosSim(burglar, f (EXCO(policeman),

EXPA(arrest))). (5)

In Chersoni et al. (2017b), the best performing function f turned out to be the simple
vector sumbetweenprototype vectors, and thusweusedvector sum for the experiments
presented in Sect. 3. According to this secondmodel, semantic coherence is conceived
as the coherence between the dynamically-updated expectations for the participants of
an event described by a sentence, and the fillers saturating the participant roles. In this
case, the global semantic coherence, depends on how well the last sentence argument
matches the expectations generated from the sentence context.

θek = EXlast Role. (6)

In our experiments, we refer to this model as ThetaProtoSum.

2.2.2 The cost of unification: event salience

In our perspective, event representations are not necessarily built on the fly: Events
already stored in the GEK are activated during processing and they can progressively
change their activation levels, as new words are processed. Ideally, events that satisfy
all the constraints imposed by the incoming words should increase their activation,
becoming the “best candidates” of a retrieval operation.

In order to account for the role of event memorization and retrieval, a second score,
σek , is used to weight the salience of the unified event ek by combining the weights
of ei and e j into a new weight assigned to ek . The activation of an event e in GEK
is computed by summing the activation scores of the single lexical items cuing it (Eq.
8), which are in turn estimated with conditional probabilities of the event given each
lexical item in the input (Eq. 7):

σi = P(e|i) = P(e, i)

P(i)
, (7)

F(σi , σ j ) = σek = σi + σ j . (8)

The score σek measures the degree towhich a unified event is activated by the linguistic
expressions composing it. Consequently, events that are cued by many constructions
in the sentence incrementally increase their salience.

It should be pointed out that the activation mechanism not only works for fully-
specified events, but also for schematic ones (i.e., a noun student is supposed to
activate also generic student reading events in the GEK ). When we compute the
global activation scores for a sentence sek , we sum the scores of (i) the entire event
ek , if such an event is stored in GEK ; (ii) the sub-events corresponding to all the

123



E. Chersoni et al.

partial combinations of the verb and its arguments. The global activation score for the
sentence sek is computed as follows:

σek =
∑

ei∈E
σei , (9)

where the set of events E includes both the full event ek and all the sub-events ei
activated by the lexical items in the input sentence.

To sum up, weweigh unified events along two dimensions: internal semantic coher-
ence (θ ), and degree of activation by linguistic expressions (σ ). The latter is used
to estimate the importance of “ready-to-use” event structures stored in GEK and
retrieved during sentence processing. Salience scores can also be used to identify
missing pieces of information, such as implicit arguments. For instance, suppose that
we have the sentence The student reads the book, with the location role left unex-
pressed. If library-related events are simultaneously cued by student, read and book,
their score will get higher during the integration, with the result that library will
become a highly salient (i.e., highly probable) location for the event described in the
sentence. This is a piece of unexpressed information that will be recovered during
sentence comprehension. on the other hand, the θ score allows us to weigh events
that are not available in the Memory component. In fact, the Unification component
can construct new events never observed before, thereby accounting for the ability to
comprehend novel sentences representing atypical and yet possible events.

Given an input sentence s, its interpretation INT(s) is the event ek with the highest
semantic composition weight (SCW), defined as follows:

INT(sk) = argmax
ek

(SCW(ek)), (10)

SCW(ek) = θek + σek . (11)

Finally,wemodel the argument complexity (ArgComp) of a sentence sek as inversely
related to the SCW of the event representing its interpretation:

ArgComp(s) = 1

SCW(INT(s))
. (12)

The less internally coherent is the event represented by the sentence and the less strong
is its activation by the lexical items, the more the unification is cognitively expensive
and the higher is the sentence argument complexity. Therefore, the joint effect of the
σ and θ scores is meant to capture the “balance between storage and computation”
driving sentence processing (Baggio and Hagoort 2011), and they can be considered
as facilitating factors in the process of building semantic representations for the events
described in natural language.
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3 Case studies

We test our distributional model of argument complexity to account for the different
processing costs of (i) typical vs. atypical verb-argument combinations (Sect. 3.2),
and (ii) of logical metonymic vs. non-coercion sentences (Sect. 3.3).3

3.1 Experimental settings

First of all, we populated the DEGmodelling GEK with events extracted from parsed
corpora. We followed the procedure proposed in Chersoni et al. (2016b) to extract
syntactic joint contexts from a concatenation of four different corpora: the Reuters
Corpus Vol. 1 (Lewis et al. 2004); the ukWac and theWackypedia Corpus (Baroni et al.
2009) and the BritishNational Corpus (Leech 1992).4 For each sentence, we generated
a surface event representation by extracting the verb and its direct dependencies.
In the present case, the dependency relations of interest are subject (nsubj), direct
(dobj) and indirect object (iobj), infinitive and gerund complements (xcomp), and a
generic prepositional complement relation (prepcomp), on which we mapped all the
complements introduced by a preposition. As in Chersoni et al. (2016b), we discarded
all the adjectival/adverbial modifiers and just kept their heads. For instance, from the
joint context director-n-nsubj write-v-head article-n-dobj we generated the event
[E nsubj:student head:read dobj:book]. For each joint context, we also generated
schematic events from its dependency subsets.We extracted a total of 1,043,766 events,
each including at least one of the words of the evaluation datasets.

All the lexemes in the events are represented as distributional vectors. We built a
syntax-based distributional semantic model by using as targets the 20K most frequent
nouns and verbs in our concatenated corpus, plus any other word occurring in the
events in GEK . Words with frequency below 100 were excluded. The total number
of targets is 20,560. As vector dimensions, we used the same target words, while
the dependency relations are those used to build the joint contexts (e.g., the nouns
nsubj:chef and dobj:pizza are examples of contexts for the verb to cook). Syntactic
co-occurrences were weighted with Local Mutual Information (Evert 2004):

LM I (t, r , f ) = log

(
Otr f

Etr f

)
· Otr f (13)

Otr f is the co-occurrence frequency of the target t , the syntactic relation r and the
filler f , and Etr f is the expected co-occurrence frequency under independence. LMI
values have been used then to rank the typical fillers for the roles in the computation of
the θ components. Since our datasets are composed of agent–verb–patient triplets, we
used the following approximations for semantic roles (Baroni and Lenci 2010; Lenci
2011): (i) the nsubj relation for the agent role; (ii) the dobj relation for the patient

3 Although the architecture presented here is similar to the proposals in Chersoni et al. (2016a) andChersoni
et al. (2017a), several details of the frameworkhave been changed, and thus the described results are different.
4 Corpora were preprocessed with the pos-tagger described in Dell’Orletta (2009) and the dependency
parser by Attardi et al. (2009).
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role; (iii) a generic verb relation for co-participants. Concretely, this relation links
noun pairs that appear as subject and direct object of the same verb.

3.2 Case Study 1: modeling verb argument expectations

As a first test for our framework, we measure the argument complexity of the sen-
tences in the Bicknell dataset (2010). The Bicknell dataset was collected to verify the
hypothesis that the typicality of a verb direct object depends on the subject argument.
For this purpose, the authors selected 50 verbs, each paired with 2 agent nouns that
altered the scenario evoked by the agent–verb combination.

Plausible patients for each agent–verb pair were obtained with production norms,
in order to generate triplets where the patient was congruent with the agent and with
the verb. For each congruent triple, an incongruent one was generated by combining
each verb–congruent patient pair with the other agent noun, in order to have items
describing atypical situations. The final dataset includes 100 pairs of agent–verb–
patient triplets, that were used to build the stimuli for a self-paced reading and an ERP
experiment. For instance, subjects were presented with sentence pairs such as:

(7) a. The journalist checked the spelling of his latest report.
(congruent condition)

b. The mechanic checked the spelling of his latest report.
(incongruent condition)

The sentences of each pair contain the same verb and the same patient, differing for
the agent. Given the agent, the patient is a preferred argument of the verb in the con-
gruent condition, while it is way less plausible in the incongruent condition. Bicknell
et al. (2010) reported that the congruent condition produced shorter reading times and
smaller N400 signatures. Their conclusion was that verb argument expectations are
dynamically updated during sentence processing, by integrating some kind of general
knowledge about events and their typical participants. Later, Lenci (2011) was the
first to use the Bicknell dataset to evaluate a distributional model for composing argu-
ment expectations on the task of assigning a higher thematic fit score to the congruent
combinations than to the incongruent ones.

We interpret Bicknell’s experimental data as suggesting that congruent sentences
have less argument complexity than incongruent sentences. Consistently, we predict
that our models will assign a higher argument complexity score to incongruent triplets
than to congruent ones. Given a congruent–incongruent triple pair, we score a hit each
time a model assigns a higher ArgComp score to the incongruent one. Models are
primarily evaluated in terms of their accuracy in this binary classification task.

3.2.1 Complexity models

For each test triple, we computed the σ and a θ scores:

– θ represents the semantic coherence of the event represented by the sentence, and
is obtained bymeasuring themutual typicality of its components. As we illustrated
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Table 1 Examples of schematic events retrieved from the DEG to compute the σ of a given joint context

Syntactic joint context Schematic events

nsubj:general head:assemble dobj:troop (nsubj:general head:assemble)

(head:assemble dobj:troop)

(nsubj:general dobj:troop)

nsubj:journalist head:write dobj:article (nsubj:journalist head:write)

(head:write dobj:article)

(nsubj:journalist dobj:article)

in Sect. 2.2.1, we tested two models that differ for the way they estimate semantic
coherence:

1. In the ThetaProd model, we computed the θ values as the product of partial
thematic fit scores. Following Eq. 2, we computed θe for each triple as the
product of (i) the thematic fit of nsubj given the verb head, θS,V ; (ii) the
thematic fit of dobj given the verb head, θO,V ; and (iii) the thematic fit of
dobj given nsubj, θS,O . In particular, θS,V is the cosine between the vector of
nsubj and the prototype vector built out of the k most salient subjects of the
verb head (e.g., the cosine between the vector of journalist and the centroid
vector of the most salient subjects of check); θO,V is the cosine between the
vector of dobj and the centroid vector built out of the k most salient direct
objects of the verb head (e.g., the cosine between the vector of article and the
prototype vector of the most salient objects of check); and θS,O is the cosine
between the vector of dobj and the centroid vector built out of the k most
salient direct objects occurring in events where the subject is nsubj (e.g., the
cosine between the vector of article and the prototype vector of themost salient
objects of events whose subject is journalist);

2. In the ThetaProtoSum model, the θe of each triple was computed as the sim-
ilarity score between the vector of the dobj and the vector of the expectations
for the dobj given nsubj and the verb head, as in Eq. 4. Vector sum is the
function that we used to combine partial prototypes in the global expectation
vector for the patient (Chersoni et al. 2017b).

We identified the typical fillers for each role as the set of filler nouns with the
strongest LMI score with the target word t and the relation r . Following Baroni
and Lenci (2010), we set the parameter k (i.e., the number of typical fillers used
to build the prototypes) to 20,

– to compute the σ score, given an event ek , we looked for a matching syntactic
joint context in our DEG repository and for schematic events matching the sub-
chunks of ek (some examples are shown in Table 1). For each of these events ei ,
we computed the activation score by using Eqs. 7 and 8. Partial scores were then
summed with Eq. 9 to obtain the global σe.

Finally, after computing θe and σe for each of our test triplets, we used Eqs. 10, 11,
and 12 to derive the final ArgComp scores.
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3.2.2 Baseline models

Besides our models of argument complexity, we computed two baselines inspired
by the early models of compositional distributional semantics. Mitchell and Lapata
(2010) proposed two simple models for vector composition. Given the vectors of the
word u and the word v, the vector representation of the expression p that they compose
is computed as follows:

– in the simplified additive model (Sum):

p = αu + βv, (14)

where both the α and β weights are set to 1 (i.e, the output vector is the component-
wise sum of the input ones);

– in the pointwise multiplicative model (Product):

pi = ui · vi . (15)

Despite their simplicity, such models turned out to be extremely efficient and com-
petitive in a wide variety of compositionality-related tasks (Rimell et al. 2016). For
each triple in our dataset, we used Sum and Product to build a vector representation
of the patient expectations given the agent–verb combination of each dataset triple.
Then, we measured the cosine similarity between the output vector and the patient
one, scoring a hit whenever the score was higher for the congruent condition than for
the incongruent one. The principle is the same of the ThetaProtoSum model: The fit
of the expectations is assessed in terms of similarity between the vector of the last
argument to be predicted and a vector representing the previous context, the difference
being that the baseline models do not have information about typical role fillers and
simply combine the vectors of the verb and its agent.

Another baseline model is based on the notion of Surprisal. After extracting all the
subject–verb–object triples, we computed the probabilities of the trigrams and of the
subject–verb bigrams with Add-One Smoothing (Jurafsky andMartin 2014). For each
triple t , Surprisal estimates were then computed as follows:

Surprisal(t) = − log2 P(nsubjt , verbt , dobjt |nsubjt , verbt ), (16)

where nsubjt , verbt and dobjt are, respectively, the agent, the verb and the patient
of t . The model accuracy is computed as the percentage of atypical triples to which it
assigns a higher surprisal score.

Our models are also compared with the best configuration in Lenci (2011), that is
the Product model (prod- l11). Such model is based on the Distributional Memory
data and estimates thematic fit by composing a prototype for the expectations on the
patient, given the agent and the verb. In prod- l11, a single prototype for the patient
slot is built by updating the typicality scores: If a filler f has a score αsubj given the
agent and a score αverb given the verb, its typicality will be computed as αsubj ∗αverb

and the prototype is built out of the 20 top fillers in the updated ranking. This way,
arguments that are not compatible with both the verb and the agent are filtered out.
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Table 2 Model accuracy and
coverage for the classification
task on the Bicknell dataset

Model Hits/accuracy Coverage

Random 50% 100/100

Sum 62% 100/100

Product 81.25% 96/100

ThetaProd 76.2% 84/100

ThetaProtoSum 70% 100/100

Surprisal 65% 65/100

PROD- L11 73.8% 84/100

3.2.3 Results on the Bicknell dataset

All models except for the Sum baseline differentiate between the two conditions. The
Wilcoxon rank sum test on the output scores of the different models reveals that:

– the ArgComp scores assigned by ThetaProtoSum to the incongruent condition
are significantly higher (p < 0.05);

– the ArgComp scores assigned by ThetaProd to the incongruent condition are
significantly higher (p < 0.01);

– the thematic fit scores assigned by the baseline Product to the incongruent con-
dition are significantly lower (p < 0.01).5

Perhaps surprisingly, the simple Product baseline manages to obtain the best accu-
racy in the binary classification task (cf. Table 2). This confirms that it is difficult to
beat baselines based on simple vector operations in many compositionality-related
tasks, a finding reported also by other studies on compositional distributional models
(Mitchell and Lapata 2010; Rimell et al. 2016). Moreover, it has been noticed that
vector multiplication eases the problem of lexical ambiguity, since dimensions that
are inconsistent with the more appropriate meaning in context are filtered out. This
could explain the particularly strong performance of this baseline. Still, despite being
outperformed, our models also achieve high levels of accuracy and assign significantly
different scores to the two conditions.

We consider the performance of ThetaProd to be particularly satisfactory, as it
manages to outperform the original model of expectations update by Lenci (2011),
when tested on the covered triplets (73.8%).6 Moreover, its classification accuracy
does not differ significantly from the one of the best-performing Product baseline
(p = 0.4), while the same baseline retains a marginally significant advantage over
the other complexity model, ThetaProtoSum (p < 0.1).7 Compared to the other
baselines, its advantage over Sum is significant at p < 0.05, while the difference with
the Surprisal baseline is only marginally significant (p < 0.1).

5 The scores of the baselines are not reversed as the ArgComp ones and they are comparable to the thematic
fit scores of the θ component. Thus, the task for the baselines is to assign lower scores to the incongruent
condition.
6 The accuracy score has been provided by the author himself.
7 p-values have been computed with the χ̃2 test.
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Table 3 Accuracy scores for the
two complexity models without
the σ component and the
accuracy loss with respect to the
full model

Model Hits/accuracy Diff Full Model

ThetaProd 70.2% -6%

ThetaProtoSum 70% 0%

Concerning the coverage of our models, we should also mention that for several of
the triplets in the dataset (48 out of 200) the contribution of the σ component was null,
as no matching joint context was retrieved from the DEG. Moreover, a syntactic joint
context for the entire event could be retrieved for only 22 out of the 200 triplets.Another
important point is that the task of composing and updating argument expectations is
generally addressed by means of thematic fit models (Lenci 2011; Chersoni et al.
2017b) corresponding to our θ component. Thus, one might wonder if it is worth
making the model more complex by introducing the extra parameter σ .

Table 3 shows the results for our complexity models after excluding σ scores from
the computation. The accuracy of the ThetaProtoSum model remains unchanged,
meaning that the direct retrieval of events from the DEG does not contribute to the
correct classification of the triplets. On the other hand, the accuracy of ThetaProd
slightly drops, and this means that the two components, in this version of themodel, do
not classify correctly exactly the same triplets. Although the difference (also consid-
ering the small size of the dataset) is too small to reach significance, the contribution
of the two components seems to be more balanced in ThetaProd. From these data, it
seems clear that an implementation of the memory component based only on textual
corpora suffers from data sparsity (a problem that is shared with Surprisal models,
even when smoothed), and future developments of argument complexity models will
have to take this factor into account.

3.3 Case study 2: logical metonymy

In the second case study, we test our distributional approach to argument complexity
on two different tasks: (i) modeling the reading times of logical metonymic sentences,
(ii) and predicting the covert event that is implicitly recovered as part of their inter-
pretation (cf. Sect. 1). For our experiments, we used two datasets created for previous
psycholinguistic studies: theMcElree dataset (McElree et al. 2001) and the Traxler
dataset (Traxler et al. 2002). Each dataset includes three different experimental condi-
tions, by contrasting constructions requiring a type-shift with those requiring normal
composition:

(8) a. The author was starting the book.
b. The author was writing the book.
c. The author was reading the book.

Sentence (8-a) corresponds to the metonymic condition (MET), while sentences
(8-b) and (8-c) correspond to non-metonymic constructions, with the difference that
(8-b) contains a typical event given the subject and the object (HIGH_TYP), whereas
(8-c) expresses a plausible but less typical event (LOW_TYP). The McElree dataset
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was created for the self-paced reading study by McElree et al. (2001), and includes
99 sentences arranged into 33 triplets like (8), while the Traxler dataset was used in
the eye-tracking experiment by Traxler et al. (2002) and contains 108 sentences (36
triplets). Three triplets of the McElree datasets were discarded, because some of their
words had very low frequency in the training corpora.

3.3.1 Modeling the processing times of logical metonymy

The models have been tested on the triplets corresponding to the agent–verb–patient
combination of the original datasets and the σ and θ scores have been computed
like in Case Study 1. We predict that our models ThetaProd and ThetaProtoSum
will assign higher ArgComp scores to metonymic sentences than to non-coercion
sentences, because the former do not comply with the semantic preferences of the
event-selecting verb. According to Zarcone et al. (2014), it is exactly the low the-
matic fit between the event-selecting verb and the entity-denoting object that triggers
complement coercion and that, at the same time, causes the extra processing load.

The baselines are the same we used for Case Study 1 (cf. Sect. 3.2.2) plus the
following ones:

ZetAl13 Zarcone et al. (2013) proposed to model the processing costs of the
same datasets by using a simpler distributional model, in which the
cost of each dataset triple was computed as

1 − θ(noun|patient, verb) (17)

Therefore, this model only considers the thematic fit θ of the patient
noun, without taking into account the agent filler.

SurprisalD17 A second surprisal model, similar to the one described in the study by
Delogu et al. (2017) on logicalmetonymy, is based on the probabilities
of the trigrams composed by the verb, a determiner and the object
noun. Given a trigram t , its surprisal score is computed as follows
(for simplicity, we abstract away from the determiner):

SurprisalD17(t)

= − log2 P(verbt , DET , dobjt |verbt , DET , dobjt ), (18)

where verbt and dobjt are, respectively, the verb and the patient of the
triple t , and DET is a generic determiner of the direct object. In their
eye-tracking and ERP experiments, Delogu et al. (2017) reported that
surprisal can fully account for the extra processing costs of logical
metonymies. In other words, the expectedness of the object noun
was shown to be the main determining factor of processing difficulty,
without the need of postulating coercion-specific costs.

The ThetaProd model turns out to be the most faithful one to the psycholinguistic
results. On the McElree dataset (cf. Table 4; Fig. 2 top), the Kruskal–Wallis rank sum
test revealed a main effect of the sentence types on the SemComp scores assigned by
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Table 4 Results of the pairwise
post hoc comparisons for the
three conditions on the McElree
dataset (Wilcoxon rank sum test
with Bonferroni correction),
scores assigned by ThetaProd

p-values HIGH_TYP LOW_TYP

LOW_TYP 0.04* –

MET 0.00046* 0.31

Table 5 Results of the pairwise
post hoc comparisons for the
three conditions on the Traxler
dataset (Wilcoxon rank sum test
with Bonferroni correction),
scores assigned by ThetaProd

p-values HIGH_TYP LOW_TYP

LOW_TYP 0.31 –

MET 9.7e−06* 0.01*
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Fig. 2 SemComp scores for McElree (left) and Traxler (right), computed with the ThetaProd model

ThetaProd (χ2 = 17.18, p < 0.001). Post hoc tests showed that SemComp scores
for the HIGH_TYP conditions are significantly lower than those in the LOW_TYP
(p < 0.05) and MET conditions (p < 0.001). These results mirror exactly those of
McElree et al. (2001) for the reading times at the type-shifted noun (both conditions
engendered significantly longer reading times than the preferred condition).

A main effect of sentence types on the SemComp scores was also found for the
Traxler dataset (χ2 = 15.39, p < 0.001). In their eye-tracking experiment (Experi-
ment 1), Traxler et al. (2002) found no significant difference between HIGH_TYP and
LOW_TYP conditions, but they observed higher values for second-pass and total time
data in theMET condition with respect to the other two. Interestingly, the ThetaProd
model produced similar results (cf. Table 5; Fig. 2 bottom): post hoc tests reveal no
difference between non-coerced conditions, but significantly higher SemComp scores
for metonymic sentences with respect to both the HIGH_TYP (p < 0.001) and the
LOW_TYP condition (p < 0.05).

The ThetaProtoSummodel also assigned significantly different scores to the three
conditions, both in the McElree (χ2 = 28.64, p < 0.001) and in the Traxler dataset
(χ2 = 26.656, p < 0.001). However, the results of this model did not reproduce so
accurately the results of the experiments, as the assigned scores simply discriminate
between metonymic and non-metonymic conditions in both datasets (see Tables 8, 9).
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Table 6 Results of the pairwise
post hoc comparisons for the
three conditions on the McElree
dataset (Wilcoxon rank sum test
with Bonferroni correction),
scores assigned by
ThetaProtoSum

p-values HIGH_TYP LOW_TYP

LOW_TYP 0.195 –

MET 4.5e−07* 0.002*

Table 7 Results of the pairwise
post hoc comparisons for the
three conditions on the Traxler
dataset (Wilcoxon rank sum test
with Bonferroni correction),
scores assigned by
ThetaProtoSum

p-values HIGH_TYP LOW_TYP

LOW_TYP 0.68 –

MET 2.4e−07* 0.00084*

Table 8 Summary table with the results of all the pairwise comparisons on the McElree dataset for all
models

Model HIGH_TYP vs. LOW_TYP HIGH_TYP vs. MET LOW_TYP vs. MET

Sum – –

Product – – –

Surprisal – – –

SurprisalD17 – –

ZetAl13

ThetaProd –

ThetaProtoSum –

Experiment –

Checkmarks indicate significant differences, while the Experiment line reports the pattern found in the
original experiment

This pattern is very close to the one found by ZetAl13, which discriminates between
HIGH_TYP and MET (p < 0.001) and LOW_TYP and MET (p < 0.01) on both
datasets. Additionally, ZetAl13 found a marginally significant difference between
HIGH_TYP and LOW_TYP in the McElree dataset.

Concerning the baselinemodels, the original Surprisal (withAdd-One smoothing)
fails to differentiate between conditions in both datasets. SurprisalD17, instead,
generates significantly different scores on both theMcElree (χ2 = 6.05, p < 0.05)and
the Traxler dataset (χ2 = 7.02, p < 0.05), but the only conditions that differ are
HIGH_TYP and MET (in both cases, p < 0.05). Finally, both the simple DSM
baselines struggle in differentiating between the three experimental conditions: for
the Kruskal–Wallis test, the differences between the scores assigned by Sum and
Product never reach significance, with the only exception of Sum on the McElree
dataset (p < 0.05). Coming to pairwise comparisons, the pattern is different than
the one reported by McElree and colleagues, since no significant difference between
HIGH_TYP and LOW_TYP has been found (p = 0.9).
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Table 9 Summary table with the results of all the pairwise comparisons on the Traxler dataset for all models

Model HIGH_TYP vs. LOW_TYP HIGH_TYP vs. MET LOW_TYP vs. MET

Sum – – –

Product – – –

Surprisal – – –

SurprisalD17 – –

ZetAl13 –

ThetaProd –

ThetaProtoSum –

Experiment –

Checkmarks indicate significant differences, while the Experiment line reports the pattern found in the
original experiment

3.3.2 Identifying the covert event

We assume that the SR of a metonymic sentence like The author starts the book
contains the following complex event:

(9) [E1 nsubj:author head:start dobj:[Ecov nsubj:author head:Ecov dobj:book]]

where Ecov is the covert event recovered when interpreting the sentences (e.g., writ-
ing). We modeled covert event retrieval as a binary classification task: Given a set
of candidate hidden events, we argue that the selected interpretation is the one that
minimizes argument complexity. This claim was tested with the following procedure:

1. for each metonymic sentence (e.g., The author starts the book) in the McElree
and Traxler datasets, we selected as candidate covert events (Ecov) the verbs in the
non-coercion sentences, which we refer to respectively as HIGH_TYP_EVENT
(e.g.,write) and LOW_TYP_EVENT (e.g., read). Therefore, we obtain quadruple
pairs like the following ones:

(10) a. author start write book (HIGH_TYP_EVENT)
b. author start read book (LOW_TYP_EVENT)

2. for each sentence SVmet O ,we computedSCW(e) (cf. Eq. 11) of the events compos-
ing its interpretation, that is [E SVmet Ecov] and [Ecov S Ecov O] (i.e., we computed
it for both the HIGH_TYP and the LOW_TYP quadruple in each pair);8

3. the model accuracy was computed as the percentage of test items for which
SCW(Ecov = HIGH_TYP_EVENT) > SCW(Ecov = LOW_TYP_EVENT).

We compared our distributional approach with the probabilistic model introduced
by Zarcone et al. (2012), and we computed the probability P(e) of a candidate verb

8 Importantly, the covert events do not contribute to the σ scores, since the corresponding verbs are not
present in the linguistic input.
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Table 10 Accuracy (and
coverage) of the models and of
the baselines on the binary
classification task for covert
event retrieval

Model McElree Traxler

Random 50% (30) 50% (36)

Sum 40% (30) 50% (36)

Product 56.6% (30) 50% (36)

ThetaProd 80% (30) 77.77% (36)

ThetaProtoSum 66% (30) 52.77% (36)

Surprisal 66.6% (30) 58.3% (36)

ZetAl12 77.7% (18) 72% (25)

Table 11 Accuracy of
ThetaProd after the removal of
σ and performance drop on the
McElree and the Traxler datasets

Dataset Accuracy Performance drop

McElree 73.3% -6.7%

Traxler 75% -2.7%

as the hidden event Ecov as:

P(e) = P(verb) · P(subject |verb) · P(object |verb). (19)

We refer to this model as ZetAl12. This is a generative model, since it first assumes
a hidden event Ecov and then generates the arguments on the basis of the choice of
Ecov .When comparedwith other distributionalmodels of logicalmetonymy,ZetAl12
achieved the highest accuracy, but a lower coverage due to the zero-counts of many
of the co-occurrences needed to compute the probabilities in (19).

The results for the covert event identification are shown in Table 10. Overall, we
can observe that the ThetaProd model is again the best performing one, classifying
correctly almost all the triplets, and it is the only one to significantly outperform a
random baseline at p < 0.05 in both theMcElree and the Traxler dataset.9 Conversely,
ThetaProtoSum, Sum, Product and Surprisal struggle in this classification task,
and they barely manage to classify a few triples more than a random baseline.

Themodel going closer to T hetaProd in terms of accuracy is the reimplementation
of ZetAL12. Like in the original study, this probabilisticmodel has very high accuracy,
but it also struggles with data sparsity and has a more limited coverage. Again, we
tested the ThetaProd model by removing the σ component, in order to assess its
contribution to the classification task. Once again, the contribution of the σ component
is limited to few triplets, especially on the Traxler dataset that includes several rare
words (cf. Table 11). It is the θ component to play the crucial role in the covert event
prediction, while for unusual and rare events, there is simply nomatching joint context
that can be retrieved from the DEG representing GEK .

As a final experiment, we wanted to test the claim by Zarcone et al. (2013, 2014),
according towhich thematic fit estimation is themechanism responsible for the trigger-
ing of logical metonymy. Their hypothesis was that the recovery of the implicit event

9 All p-values were computed with the χ2 test.
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could be a consequence of the dispreference of the verb for the entity-denoting argu-
ment. In our framework, this corresponds to saying that the low thematic fit between
verb and patient triggers a retrieval operation with the aim of increasing the semantic
coherence of the event represented in the SR. To test this claim, we compared the θ

scores of the events containing the HIGH_TYP covert event (i.e., [E S Vmet Ecov] +
[Ecov S Ecov O]) and the corresponding MET event (i.e., [E S Vmet O]), predicting that
the former events are more semantically coherent than the latter.10 This hypothesis
turned out to be correct: According to theWilcoxon rank sum test, both in theMcElree
(W = 199, p < 0.01) and in the Traxler dataset (W = 157, p < 0.01) the θ of the
structures with the covert events are significantly higher.

4 Discussion

We introduced a framework for argument complexity relying on the two components of
Memory andUnification, as in theMUC framework byHagoort (2013). The first refers
to the storage ofGEK thatwe represent bymeans of the corpus-derivedDEG,whereas
the second concerns the constraint-driven combination of the units stored in the DEG
into more complex structures. Our hypothesis is that GEK stores information about
typical events and participants, and that this knowledge allows speakers to anticipate
the upcoming linguistic input during sentence processing. Human lexical knowledge,
as argued by several modern theories of language processing (Libben 2005; Marzi
and Pirrelli 2015), does not seem to be organized to minimize storage, but rather to
maximize processing efficiency.

Words work as cues to GEK (Elman 2014), and the recovered information is
dynamically unified to build a representation of the events that natural language sen-
tences are likely to communicate. Differently from other approaches, mainly looking
at syntactic factors, we focused on the semantics of the events described by natural lan-
guage sentences and used syntax only to identify aspects of their structure. However, a
completemodel of processing complexity could separately represent the relevant infor-
mation for each linguistic domain by means of different constraints (Blache 2016),
and domain-specific complexity indexes could be somehow combined and integrated
in order to account for the different complexity sources.

In the proposed DSM-based implementation, event representations are weighted
along two different dimensions:

– the semantic coherence θ of the unified event, which depends on the mutual
typicality between the participants and is computed with a distributional model of
thematic fit;

– the activation by lexical items or salience σ , which corresponds to the activation
strength of GEK events cued by lexical items. Activation values are modeled
as simple conditional probability scores, and the global activation of an event is
computed by taking into account also the contribution of schematic events.

10 Since the computation of the two θs in ThetaProd requires a different number n of factors, the scores
have been normalized by elevating them to the power of 1/n.
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An important assumption of our model is that the argument complexity of a sentence
is inversely-related to these two factors: (i) the activation strength of a corresponding
event stored in GEK , and (ii) the mutual typicality of its participants, resulting in a
more predictable situation. In our experiments, we compared the predictions of our
model with the findings of some psycholinguistic studies. The most successful version
of the model turned out to be ThetaProd, which computed the θ component as the
product of the single event-participant thematic fit scores. We argue that this approach
has several elements of strength:

– it achieved a competitive performance on the binary classification task for the
update of context-sensitive argument typicality, evaluated on the data by Bick-
nell et al. (2010), being outperformed only by a strong Product baseline, which
however obtain suboptimal performances in the other tasks;

– in modeling the processing cost of logical metonymy observed in the studies by
McElree et al. (2001) and Traxler et al. (2002), ThetaProd closely reproduced
the behavioral data showing significant differences between the three experimental
conditions (typical, non-typical and metonymic event);

– in retrieving the covert event of logical metonymy, which turned out to be difficult
for all the models, it achieved the best performance and was the only system
managing to significantly outperform a random baseline. Moreover, it does not
suffer from the coverage problems of probabilistic models (Zarcone et al. 2012) ;

– the θ component assigns significantly higher scores to metonymic verbs (e.g.,
finish) with a non-event denoting direct object (e.g., book) than to the correspond-
ing structure after the integration of the covert event. This is coherent with the
hypothesis by Zarcone et al. (2013, 2014), according to which the covert event
retrieval is triggered by a low thematic fit between verb and object, and it is aimed
at “repairing” the low degree of semantic coherence of the metonymic structure;

– finally, the addition of the σ component leads to some improvement (although not
significant) over the thematic fit model alone (θ ), making us think that the action
of the two components can be somehow considered as complementary.

An actual limit of the model is the coverage of the σ component, which was found
to be low on all datasets. On the one hand, this could perfectly make sense, as it is
difficult to think that a semantic memory component could store all possible events. In
most cases, it is likely that the semantic representations for the events have to be built
from scratch. On the other hand, it would be desirable for future extensions of such a
model to implement some sort of generalization on the basis of the similarity between
the arguments. For example, there might be no distributional information stored for
the event of a policeman arresting a burglar, but there might be one for a policeman
arresting a crook. The ability to generalize, by recognizing the similarity between
the two situations and adapting the stored representation to the new event, would be
extremely useful for increasing the contribution of the σ component. At the same
time, the results of our experiments confirm that argument complexity and its online
processing effects need to be explained within a general model of the incremental and
compositional construction of the semantic representations of sentences describing
previously unseen events, which is the very essence of natural language productivity.
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5 Conclusions and future work

In this work, we have presented a distributional model of argument complexity and
we tested it on the tasks of accounting for sentence typicality and logical metonymy
resolution. In our view, these are two aspects of the same phenomenon, as in both
cases the argument typicality determines processing complexity.

On the computational side, one of our models showed a nice capacity of handling
both phenomena in two different psycholinguistic datasets, proving to bemore general
than previous approaches. It should be pointed out, however, that our datasets were
not the ideal ones for an exhaustive comparison between the models, given their
small size and the relatively simple structure, which has been modeled as subject–
verb–object triplets. As we anticipated in the introduction, we treated the problem
of semantic complexity mainly in relation to the problem of argument typicality, but
this entails ruling out several, potential sources of complexity, such as more complex
event structures (i.e., events including also roles like instruments and locations), the
presence of argument modifiers, and semantic relatedness effects due to the sentence
or wider discourse context. Many current approaches to the estimation of argument
typicality also limit themselves to relatively easy tasks, and one of the main reasons is
the well-known scarcity of benchmark datasets (Vassallo et al. 2018). Hopefully, the
joint effort of NLP and psycholinguistic research in the next years will produce more
robust benchmarks, built with the goal of evaluating argument complexity models on
a wider variety of structures, and taking into account semantic complexity stemming
from different linguistic domains (Blache 2011, 2016).
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